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Synchronized Minima in ECoG Power at
Frequencies Between Beta-Gamma Oscillations
Disclose Cortical Singularities in Cognition
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Electrocorticogram (ECoG) data of trained rabbits are analyzed to identify neural correlates of cognition. Previ-
ous work indicated long periods of large-scale synchronization of cortical activity, punctuated intermittently by
brief desynchronization events. The actual timing of the synchronization events generally depends on the ana-
lyzed frequency band, from alpha to high gamma. Here we present the surprising experimental indications that
the desynchronization events may synchronize briefly over a wide range of frequencies during a singular event
of cognition. The observed synchronization of desynchronization (SOD) effect has significant invariance over
broad frequencies. This observation is in line with the expected scale-free behavior of critical brain dynamics.
To quantify the observed SOD phenomenon, we analyze information-theoretic measures based on the con-
cept of pragmatic information, to complement the Shannon entropy index. We demonstrate the benefit of the
new indices in the analysis and detection of phase transitions and possible desynchronization windows in time
domain. The results are interpreted in terms of a dynamical system approach to brains operating in a domain
of criticality.

KEYWORDS: Electrocorticogram (ECoG), Hilbert Transform, Synchronization, Criticality, Singularity, Cognition.

INTRODUCTION

Neurophysiological processes manifesting higher cogni-
tion and consciousness are intensively studied worldwide
and there are great many spectacular successes in the field;
see, e.g., Refs. [1–5]. A word of caution is in place in
the interpretation of the experimental findings. Brains are
the most complex substances in the known Universe and
only the most advanced brain imaging methods with the
highest spatial and temporal resolution can give hope for
deciphering the language of the brain.
A potential trap in modeling and interpreting the oper-

ation of brains is characterized by philosopher H. Dreyfus
as representational cognitivism [6–7]. According to Drey-
fus, representational cognitivism tries to identify localized
handles as components of a symbol system describing
brains and their intelligent operation. These symbols, how-
ever, are not grounded in the neurophysiology of the brain
according to Dreyfus, rather they represent just a pile of
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Received: 2 July 2012
Accepted: 27 July 2012

meaningless facts irrelevant to the cognitive functions of
the brain. Representational cognitivism is unable to solve
the framing problem and cannot provide meaningful sup-
port to the individual, either biological (animal/human) or
artificial (animat). Embodied cognition has been proposed
as a promising approach to resolve this controversy [8–10].
Nonlinear neurodynamics addresses this challenge by

viewing the brain as a dynamical system and it has been
used successfully to interpret embodied cognition and
learning in neural systems [11–17]. Dynamic models can
provide the causal basis of the adaptive ability of brains
and give an account of how the brain of an active animal
can directly pick up and update what counts as significant
in its world [6, 18]. In the neurodynamic approach to cog-
nition, learning establishes an attractor landscape over each
cortical area, in which the basins of attraction are shaped
by experience. Each attractor in the landscape corresponds
to a class of stimulus that the animal has learned to dis-
criminate, and each attractor is accessed by the arrival of
a learned stimulus of that class. A systematic formula-
tion of dynamical brain theory is expressed in Freeman K
(Katchalsky) sets [11, 19–20].
Synchronization effects play a key role in cortical

functions and numerous brain studies are currently in
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progress to evaluate the levels of synchrony across
large cortical populations. Intermittent synchronization-
desynchronization has been modeled using K-sets, and an
experimental paradigm has been outlined to construct a
distributed decision support systems based on such prin-
ciples [21–22]. In consequent work [23–24] it has been
hypothesized that phase transitions are the hallmarks of
higher cognition and awareness [25]. If the brain indeed
exhibits critical phase transitions in line with that hypoth-
esis, then scale-free behavior is expected to take place
during cognitive states near criticality. Such scale-free
behavior should include time dimension, spanning across
a range of frequencies. Until now there has not been suf-
ficient evidence to support this hypothesis.
In the present work we introduce experimental results

on synchronization effects across a range of temporal fre-
quency bands. The work reported here is based on exper-
imental ECoG studies using intracranial electrode arrays
implanted in rabbits [21]. Previous studies were limited to
specific frequency bands, such as gamma or theta band.
Here we give comprehensive analysis for broader frequen-
cies. We start with describing ECoG experiments with rab-
bits, followed by introducing the Hilbert transform-based
signal processing method. Our results point to a clear syn-
chronization effect as a specific time instant across fre-
quencies covering delta-, theta-, alpha-, beta-, and gamma
bands. This time instant marks intensive cognitive activity,
i.e., classification of previously learnt conditioned stim-
uli by the rabbit. We quantify the obtained results using
information-theoretic measures and discuss their relevance
to the characterization of cognitive functions. We conclude
with the description of future plans and perspectives.

DESCRIPTION OF RABBIT ECoG
EXPERIMENTS

Electrical activity of rabbit cortices has been measured
using an array of 8× 8 clinically implanted electrodes
[9]. The space between the electrodes is 0.8 mm cover-
ing an area of 5.6 mm ∗ 5.6 mm in either of the olfac-
tory, visual, auditory or somatomotory cortices [21], see
Figure 1. Here, experiments on the visual cortex are ana-
lyzed. Experiments have been conducted for a duration of
6 s, which have been divided into 3 s pre-stimulus and
3 s post-stimulus periods. The sampling frequency was
500 Hz, which gave a total of 3000 sample points for
each of the 64 channels. The rabbits were trained to dis-
criminate visual conditioned stimuli eliciting conditioned
responses, which have been analyzed during the 3 s post-
stimulus time segments. During data recording, the signals
were low-pass filtered at 100 Hz.
Local areas of sensory cortices generate broad-

spectrum, aperiodic waves of dendritic activity that have
the same waveform, which is observed as the similarity of
the amplitude modulation (AM) patterns of EEGs chan-
nels recorded by the electrode array. The AM patterns are

Fig. 1. Illustration of the arrangement of the 8× 8 electrode arrays at
various implant sites on the cortex. In the present study we analyze data
observed by visual experiments; Adopted with permission from [21],
J. M. Barrie et al., Modulation by discriminative training of spatial pat-
terns of gamma EEG amplitude and phase in neocortex of rabbits. J. Neu-
rophysiol. 76, 520 (1996). © 1996, Amer. Physiol. Soc.

determined by the synaptic connectivity within each cor-
tex, which change with the training of animals to iden-
tify significant stimuli. Evidence for the dynamic systems
theory in cortices comes from the results of classification
of the spatial AM patterns. The EEG segments coming
from a sensory area give clusters of points, each of which
corresponds to a response to a sample of the class of
stimulus that the animal has learned to identify. Discrimi-
nation is learned by the animal under classical condition-
ing paradigm, in which one stimulus is reinforced (CS+)
and the other is not (CS−).
In order to establish a baseline level of classification,

EEGs recorded from a sensory area are segmented by
fixed-length windows (64 ms) stepped at fixed-length time
intervals (32 ms) into a matrix. As a result, we have a
sequence of AM patterns measured at regular intervals,
32 ms in the present case. These AM patterns provide all
the knowledge we have on the operation of the cortex at
the given level of spatial and temporal granularity.
Sequential AM patterns evidence the occasional onset of

phase cones, which evolved starting at some time instant
from some spatial point. The onset time and starting apex
point of the cones occur at an apparently arbitrary point in
space-time. Thereafter a phase gradient propagates from
the apex rapidly, at a speed comparable to the speed of
neural signal propagation along lateral axons in the cortical
neuropil [22–23]. Phase cones serve as markers, by which
to locate the starting and ending times of emergent AM
patterns having randomly varying latencies over sequential
trials in which either of two discriminated stimuli were
presented, one reinforced and the other not. Before clas-
sification, the AM patterns are pre-processed based on
the observed onset time of phase cones. In addition, a
model-based filtering has been applied using K-set (KIII)
[19, 23]. The statistical significance of the AM pattern
classification has been evaluated using Student’s t-test.
The null hypothesis (H0) states that the observed

AM pattern is undistinguishable with respect to the

14 J. Neurosci. Neuroeng., 1, 13–23, 2012
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Fig. 2. Temporal variation of the confidence level of the zero hypoth-
esis (H0), which states that the observed AM patterns are not distin-
guishable with respect to the conditioned stimuli. H0 can be rejected
for a short period after the stimulus (at t = 0), and also in the time
window around 750–850 ms. Dash: without preprocessing; Solid line:
with advanced preprocessing using phase cone detection. Reprinted with
permission from [23], R. Kozma and W. J. Freeman, Classification of
EEG patterns using nonlinear neurodynamics and chaos. Neurocomputing
44–46, 1107 (2002). © 2002, Elsevier.

classification measures concerning CS+ and CS−. The
alternative hypothesis (H1) states that the observed AM
pattern is closer to its correct cluster, thus it is distinguish-
able using the given classification tool. This method yields
a sequence of probability values showing the times when
the CS− and CS+ spatial AM patterns can and cannot
be separated. Separation does not occur in the 3 s control
period before the stimulus.
The analysis reveals two types (Type I and Type II) of

discriminable AM patterns in the (visual) sensory cortex
during the post-stimulus period [23]. Type I occurs with
short latency after the stimulus (within 200 ms). Type I
AM pattern represents the direct impact of a discriminated
stimulus on the activity of the receiving cortex. Type II
classifiable AM pattern is delayed and it occurs with vari-
able latency within 300–1000 ms of the stimulus onset.
It is endogenous and the result of complex transforma-
tions through the divergent-convergent neural pathways.
Its location in time is revealed by a phase cone at the
center frequency of the gamma oscillation. Type II AM
pattern has been interpreted as the indication of chaotic
self-organization of cortical dynamics as the result of sen-
sory input-induced destabilization.
In the past decade, Hilbert transform-based analytic sig-

nal evaluation method became widely used in EEG stud-
ies, due to the fine temporal resolution provided by this
approach. In the follow discussions, we employ such ana-
lytic approach to the rabbit ECoG data and introduce
the results which shed light on the details of the spatio-
temporal dynamics, especially following the stimulus.

HILBERT ANALYSIS OVER THE
THETA BAND

Analytic Amplitude and Phase Relationships of
ECoG Signals

We calculate analytic signals V !t" after Hilbert-
transforming the 64-channel ECoG array data. The applied

Hilbert transform methodology follows the approach
described in [26–27]. The EEG of each channel vj!t"
(j = 1# $ $ $ #64) is transformed to a time series of complex
numbers, Vj!t", with a real part, vj!t", and an imaginary
part, uj!t",

Vj!t"= vj!t"+ iuj!t"# j = 1#64 (1)

Here the real part is the EEG signal, while the imaginary
part is the Hilbert transform of vj!t". We use MATLAB
‘hilbert’ function to produce uj!t". Sequences of steps give
a trajectory of the complex vector V !t" composed of 64
complex values evolving in time. The vector length at each
digitizing step, t, is the analytic amplitude:

Aj!t"= %v2j !t"+u2
j !t"&

$5 (2)

while the analytic phase is defined and the arctangent of
the angle of the vector:

Pj!t"= atan%uj!t"/vj!t"& (3)

In this section, we show detailed results obtained in the
theta band. This helps to illustrate major features of Hilbert
analysis. In the next section we introduce results over a
broad range of frequencies.
Band-pass filter is applied in the theta band with param-

eters: FstopL = 3 Hz, FpassL = 4 Hz, FpassH = 6 Hz, and
FstopH = 7 Hz. Figure 3 shows filtered ECoG signals for all
64 channels (top), the analytic phase of the signals after
Hilbert transform (middle), and the absolute analytic fre-
quency derived from the instantaneous phase differences
(bottom).
Figure 3 shows that the channels move together and

highly synchronized most of the time. During these pro-
longed synchronized periods the spatial mean analytic fre-
quency is constant at the center frequency of the pass band
and it is concentrated near the applied pass band of 4 Hz–
6 Hz. From time to time, there are moments with signif-
icant dispersion of the signal amplitudes and phases. The
loss of synchrony is clearly visible through the spikes in
the analytic frequency, e.g., at time instants 1.2s, 2.8 s,
3.1 s, 3.5 s, and so on. At these time instances the synchro-
nization between channels breaks down, which dispersion
will be used as an indicator of the indeterminacy of ana-
lytic phase during the times of marked decrease in analytic
amplitude.
Figure 4 combines analytic amplitudes (blue) with

instantaneous frequencies (red). Visual inspection indicates
that events marked by spikes in the instantaneous phase
mostly coincide with drops in the analytic amplitudes.
This is in agreement with earlier finding using ECoG and
EEG data [26–27]. There are exceptions from this rule.
For example, just before 3 s, the amplitude drops close to
zero, but the instantaneous phase does not exhibit a spike.
Similar behaviors are observed over all frequency bands,

J. Neurosci. Neuroeng., 1, 13–23, 2012 15
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Fig. 3. Illustration of the analyzed rabbit ECoG data filtered over
theta band with pass band 4 Hz to 6 Hz. Top diagram: signals of all
64 channels; middle: analytic phase of the signals after Hilbert transform;
bottom: absolute analytic frequency derived from the instantaneous phase
differences.

which will be presented in the next section together with
its quantitative characterization.
The events occurring before 3 s and after 4 s seem to

have a different influence on the amplitude than the events
occurring between the 3.5 s–3.8 s window. This specific
window corresponds to the post-stimulus period when the
rabbit’s cognitive activity is the highest, following condi-
tioned learning. In this time window, A!t" exhibits com-
plex behavior; some Aj!t" channels go up, while others
decrease, instead of all channels uniformly moving in the
same direction. We observe that this is the period for
which the signal amplitude range of the signal is the high-
est. Next, we develop statistical indices to quantify these
behaviors.

Fig. 4. Illustration of the correlation between the drops in analytic
amplitude (blue) and spike in instantaneous frequency (red) for all
64 channels; theta-band analysis with pass band of 4 Hz–6 Hz.

Information-Theoretic Indices

In this section we develop a qualitative characterization
of the empirically observed onization effect described
previously. We describe the pragmatic information index
following [29–31]; then we introduce several modified
versions of the original indices [28]. We denote the
64 scalar values of the squared analytic amplitude as A2

j !t",
which form a vector at each time step A2!t". Vector A2!t"
serves as an order parameter. The rate of pattern evolution
is proportional to the Euclidean distance, De!t", between
successive time points:

De!t"= dist!A2!t"# A2!t−1""= $A2!t"−A2!t−1"$
(4)

The ratio of mean rate of free energy dissipation across
the array %A2!t"&, to the rate of change in the order
parameter, De!t", defines a quantity, called pragmatic
information [30]:

He!t"=< A2!t" > /De!t" (5)

Here %& denotes the spatial ensemble average. In
additional to the individual channels, we define the
average over k = 8 groups of channels, defined as fol-
lows: group 1 = {for channels j = 1:8}, group 2 =
'j = 9:16(# $ $ $ , group 8= 'j = 57:64}. These group aver-
ages will be useful to display the variation of the indices
over the array, without giving details of individual chan-
nels. Following are the indexes relevant to our analysis:

• Range (max-min) of Amplitude (RAj " for each chan-
nel. The Range of Amplitude can be the squared analytic
amplitude as originally introduced by Freeman [26]; we
will also evaluate indices using the signal amplitude, and
the analytic amplitude.
• Euclidean Distance: can be calculated either for the

whole lattice (De" or for each of the k groups (Dek".
This quantity has been calculated originally using analytic
amplitudes as in Eq. (4); it can be calculated also using
the analytic phase values.
• Shannon Entropy Index (SHj " for each channel.

This quantity is computed with MATLAB entropy index
function.

From Refs. [30–31] we introduce the general form of
Pragmatic Information Index (He ∗ (t)) as follows:

He ∗ !t"= %RAj!t"&/De!t" (6)

We experiment with alternative definitions of the Prag-
matic Information Index, by using 3 variants of the ampli-
tude measure. RA can be RSA, RAA, or MA2, as defined
below:

• RSA(t): The Range of the Signal Amplitude;
• RAA(t): The Range of the Analytical Amplitude;
• SAA(t): The Squared Analytical Amplitude.

16 J. Neurosci. Neuroeng., 1, 13–23, 2012
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Each of these quantities can be defined as spatial ensem-

ble average for the whole array, or for a specific group k.
They implement either temporal average over a specific
interval T for SAAT (t), RSAT (t) and RAAT (t), or can
use instantaneous values in the case of SAA(t). Accord-
ingly, the following Pragmatic Information Indices are
introduced:

HRSAk#T!t"=< RSAk#T!t" > /De!t"# (7)

HRAAk#T!t"=< RAAk#T!t" > /De!t"# (8)

HSAAk#T!t"=< SAAk#T!t" > /De!t" (9)

Note that HSAAk#T!t" coincides with the original defini-
tion of He!t" in Eq. (5), if we take the instantaneous value
without temporal averaging, and if the spatial average
includes the whole array, not only a specific subgroup k.
HRSAk#T!t" and HRAAk#T!t" introduce alternative quanti-
ties, which involve granulation in space through groups k
and also granulation in time through average range evalu-
ations over period T .
Figure 5 shows the Pragmatic Information Index

HSAAk#T(t) calculated using Eq. (9) over 50 consecutive
time segments of duration 0.1 s in the interval 0.5 s to
5.5 s. The applied frequency band is theta (4 Hz to 6 Hz).
The top figure shows the spatial group indices for all k val-
ues; the bottom figure illustrates the ensemble average
index over the whole array. Clearly, the index has peri-
ods of significant increase and consequent drop over the
studied time window.
Figure 6 shows the Pragmatic Information Index

HRSAk#T!t" calculated using Eq. (7) for the mean of the
signal amplitudes over theta band; notations are similar to
Figure 5. Finally, Figure 7 shows the HRAAk#T!t" index
based on the mean range of analytic amplitudes (AA)

Fig. 5. Pragmatic Information Index HSAAk#T!t" calculated using the
squared mean of analytic amplitudes over the theta band (4 Hz–6 Hz);
top: group indices for the k groups, T = 0$1 s; bottom:ensemble average
index over the whole array.

Fig. 6. Pragmatic Information Index HRSAk#T!t" calculated using the
range of the original signal amplitudes over the theta band (4 Hz–6 Hz);
top: group indices for the 7 groups; bottom:ensemble average index over
the whole array.

over theta band. All the indices show spikes at given
time instances. These spikes have some common features
across index types, but they are not identical. Clearly, they
reflect various aspects of the underlying brain dynamic
process. In order to understand the underlying processes
better, we depict various components of these indices for
each group of channels in Figure 8; namely the Shannon
Index, Amplitude measure HRAAk#T!t", and Euclidean
distance. All these measures show changes during the ana-
lyzed period. The Shannon entropy and Euclidean distance
varies significantly between the channels practically for the

Fig. 7. Pragmatic Information Index HRAAk#T!t" calculated using the
mean of the range of analytic amplitudes over the theta band (4 Hz–
6 Hz); top: group indices for the 7 groups; bottom: ensemble average
index over the whole array.

J. Neurosci. Neuroeng., 1, 13–23, 2012 17
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Fig. 8. Indices for the individual groups of channels calculated over
50 times steps, each of duration 0.1 s; theta band (4 Hz to 6 Hz). Shannon
Entropy Index (top), Amplitude measure using range of Analytic Ampli-
tude HRAAk!t" (middle), and Euclidean Distance.

whole experiment. The amplitude measure HRAAk#T!t",
however, is rather uniform across all groups for most of
the experiment, with the exception of the time period 3 s
to 4 s. This is potentially valuable observation, as rabbits
perform the classification task exactly during this time
period. Similar observation is true for the other ampli-
tude measures. The observed spatial diversity of ampli-
tude measures and their sensitivity to cognitive activity
indicates that synchronization across the cortex is closely
related to cognition and decision making. Synchronization
across space at various frequency bands is analyzed in the
rest of this paper.

SYNCHRONIZATION STUDIES ACROSS
FREQUENCY BANDS

Here we describe our findings on synchronization in space
at various frequency bands, which extend previous results
over the theta frequencies. In all evaluations, we keep
the frequency bandwidth constant at 2 Hz, while shifting
the center frequency of the filter stepwise at 2 Hz incre-
ments. The considered frequency windows are summarized
in Table I.

Table I. Frequency windows analyzed.

Frequency band Windows (Hz) fLow–fHigh

Delta 2–4
Theta 4–6, 6–8
Alpha 8–10, 10–12
Beta 12–14, 14–16, 16–18, 18–20, 20–22, 22–24, 24–26
Low gamma 26–28, 28–30, 30–32, 32–34, 34–36, 36–38, 38–40

The following quantities have been evaluated both for
the band-passed ECoG and their analytic counterparts:

• Average Signal Amplitude (SA or AA): This can be
either the amplitude of the ECoG signal (SA) or the
analytic amplitude (AA) of the analytic signal calculated
as ensemble average for the array.
• Standard Deviation in Space (STDx): The standard

deviation calculated across the 64 channels for SA or AA,
respectively.
• Instantaneous Frequency (IFx): Evaluated using the

temporal derivative of the analytic phase (AP) and depicted
as spatial average IF across all channels.

The results for delta, theta, and alpha bands are shown
in Figures 9 and 10, describing SA and AA characteristics,
respectively. Figures 11 and 12 show results for beta and
low-gamma bands, where SA and AA characteristics are
described, respectively. The instantaneous frequency IFx
has been calculated as the spatial average over all channels.
Recall that in all figures the first half of the time series

corresponds to the resting period prior the stimulus, which
is administered in the form of a light flash at moment
t = 3 s. The second part of the experiments after 3 s rep-
resents the post-stimulus response. The first and last 0.5 s
are omitted as those periods are used for the proper wid-
owing. We have the following major observations based
on Figures 9–12:
(1) SA and AA: There are significant oscillations during
the whole time period, even during the resting period,
but the oscillations show drastic increase between 3–4 s,
i.e., immediately after the stimulus. In the case of SA, the
increased amplitude is more visible at higher frequencies.
For the AA, on the other hand, the increase is very promi-
nent over all frequencies.
(2) In the case of AA: We can observe a fine structure
of the amplitude measure. Namely, there is an increase
of AA between 3–3.5 followed by a drop between 3.5–
4 seconds. In this last period we can observe a small
increase between 3.5–3.75 seconds, followed by a drop
between 3.75–4 seconds.
(3) STDx for SA and AA: Here the most important feature
is the overall significant increase of STDx between 3–
4 seconds. This effect is clear in both SA and AA analysis.
(4) IFx: We consider the absolute value of IF in linear
and log coordinates. We observe a drop between 3–3.5 s
followed by an increase between 3.5–4 s.
(5) AA and IFx relationship: As a general trend, whenever
there is a drop in IFx there is an increase in AA and
vice versa; this is in line with previous research [26, 29].
Now we can confirm this as a general behavior over broad
frequencies.

DISCUSSIONS

Based on the introduced experimental findings, we can
make some important remarks. Clearly, the period between

18 J. Neurosci. Neuroeng., 1, 13–23, 2012
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(a)

(b)

(c)

Fig. 9. ECoG signal amplitudes filtered over various temporal fre-
quency bands at constant 2 Hz bandwidth segments; each plot dis-
plays the average signal amplitude (SA), standard deviation of the signal
(STDx), and the average instantaneous (IFx) frequency over the given
narrow band in linear coordinates; (a) delta (2 Hz–4 Hz); (b) theta (4 Hz–
6 Hz) and (6 Hz–8 Hz); (c) alpha (8 Hz–10 Hz) and (10 Hz–12 Hz).
Multiple curves on a given figure indicate the signals obtained over mul-
tiple frequency bands of width 2 Hz each.

3–4 s is significantly different from the rest of the time seg-
ments for all frequency bands. In that period, the moments
between 3–3.5 s and between 3.5–4 s are also significantly
different. Particularly, in the period between 3.25–3.5 s the
frequency dispersion drops dramatically around the mean

(a)

(b)

(c)

Fig. 10. Analytic Amplitude (AA) of the signals after Hilbert transfor-
mation; the signals have been filtered over various temporal frequency
bands at constant 2 Hz bandwidth segments; each plot displays the aver-
age analytic amplitude (AA), standard deviation of the AA, and the aver-
age frequency over the given narrow 2 Hz frequency band; (a) delta
(2 Hz–4 Hz); (b) theta (4 Hz–6 Hz) and (6 Hz–8 Hz); (c) alpha (8 Hz–
10 Hz) and (10 Hz–12 Hz).

due to high synchronization. This then is followed by a
dramatic increase in dispersion between the period 3.5–
4 seconds. These observations clearly point to the onset of
significant synchronization during 3.2–3.5 s, which seems
to diminish during 3.5–4 s. There may be diminished syn-
chronization during 3.5 Hz to 4 Hz, but it cannot be stated

J. Neurosci. Neuroeng., 1, 13–23, 2012 19
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(a)

(b)

Fig. 11. ECoG signals filtered over various temporal frequency bands at
constant 2 Hz bandwidth segments; each plot displays the signal ampli-
tude (SA), standard deviation of the signal, and the average frequency
over the given narrow band in linear coordinates; (a) beta (12 Hz–26 Hz)
and 2 Hz bandwidth increments; (b) low gamma (26 Hz–40 Hz) at 2 Hz
bandwidth. Multiple curves on a given figure indicate the signals obtained
over 7 bands of width 2 Hz each.

with high confidence due to the indeterminacy of the ana-
lytic phase. The AA magnitude remains very high until
about 4 s, and suddenly drops afterwards.
The observed effects indicating transitions are the most

prominent during the post- stimulus period of 1s in gamma
and beta bands; they are also observable though less
prominent in the alpha and theta bands. This observation
means the presence of an important intra-cortical effect
across frequencies 4 Hz to 40 Hz. This effect is not seen
in the delta band, below 4 Hz. This may be caused by the
absence of significant delta component in the ECoG signal
at the given experimental setup. It is important to mention
that the average frequency for the 2–4 Hz band is expected
around 3 Hz, however, in our analysis we found it to be
over 4 Hz. This observation indicates that filtering low fre-
quencies requires careful attention. It is also possible that

(a)

(b)

Fig. 12. Analytic Amplitude (AA) of the signals after Hilbert transfor-
mation; the signals have been filtered over various temporal frequency
bands at constant 2 Hz bandwidth segments; each plot displays the ana-
lytic amplitude (AA), standard deviation of the AA, and the average
frequency over the given narrow 2 Hz frequency band in logarithmic
coordinates; (a) beta (12 Hz–26 Hz) at 2 Hz increments; (b) low gamma
(26 Hz–40 Hz) at 2 Hz increments.

delta frequency band is insignificant or absent during this
specific experimental task.
In order to provide further quantitative measures of the

observed increase in the oscillations during the post stimu-
lus period, we define the range of oscillations across chan-
nels at sliding windows of length 0.25 s. In Figure 13(a)
we show the range for the mean of the SA, while
Figure 13(b) shows the range of mean for AA. Similarly,
Figure 14(a) shows the range for the spatial standard devi-
ation of the SA, while Figure 14(b) shows the same quan-
tity for AA. This analysis allows us to have a measurement
of change for windows of time and therefor may help on
classifying events and their neural correlates. We observe
that the range measure is a suitable index to quantify the
increased oscillations during 3–4 s. Again, the delta band
indicates less clear response to the classified stimulus.
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(b)

Fig. 13. Range of the mean values over frequency bands delta, theta,
alpha, beta, and gamma with window length of 0.25 s; (a) ranges of the
ECoG signals; (b) range for the analytic amplitudes (AA).

Finally, we return to earlier results obtained for the
classification of AM patterns, see Figure 2. Those results
indicated that the AM patterns have discriminative power
during the first 0.2 s after the stimulus (Type I effect),
and towards the end of the 1 s post stimulus period
(Type II effect). Looking at the results of our present
work, we also see the prominence of the 1 s post stimulus

(a)

(b)

Fig. 14. Range of the STDx over frequency bands delta, theta, alpha,
beta, and gamma with window length of 0.25 s; (a) ranges of the ECoG
signals, (b) range for the analytic amplitudes (AA).

period, however, the regions of interest seem complemen-
tary. Specifically, we see strong synchronization during
the 3.25–3.5 s period, which switches to desyncroniza-
tion during the 3.5–3.75 s period. Note that precisely this
is the period when the AM classification did not work!
The AM patterns vary rapidly during the intermittency
period of 3.25–3.75 s, which may be reason of the absence
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of classifiable AM patterns. The present analysis may
provide important details exactly during the critical transi-
tion period 3.25–3.75 s about the spatio-temporal neurody-
namics. This is the decision making period, during which
the subject tries to solve the classification task.
A possible interpretation is given as follows: after a brief

desynchronization period of approx. 0.2 s, the subject tries
to solve the task, which is marked by large-scale cortical
synchronization for a period of about 0.3 s. At the end of
this 0.3 s period, a possible solution starts to emerge in
the form of a new AM pattern. The consolidation of the
new AM pattern takes about 0.2–0.3 s. Finally, at 0.8–1 s
after the stimulus, a new AM pattern is clearly established
and it can be classified successfully. After successful clas-
sification, the subject is satisfied and loses interest in the
stimulus, thus its brain activity returns to the background
level. Obviously, extensive future studies are needed to
better understand the observed dynamics and to validate
the outlined hypothesis.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In this work we analyzed ECoG data and identified syn-
chronization effects with sudden transitions in spatio-
temporal neurodynamics. The observed effects can be
interpreted based on dynamical systems models. Accord-
ing to dynamical brain theory, destabilization of corti-
cal dynamics can be initiated at some seemingly random
point of time and space in the cortex. This phenomenon
is similar to phase transition in physical systems, which
start at a certain nucleus, like the condensation of vapor
to liquid. Phase transitions in brains, however, are much
more complex than in physics. In brains, transitions to
low-dimensional phase with large-scale synchronization
are intermittent and meta-stable, followed by periods of
cortical dynamics evolving in a high-dimensional phase.
There is a cycle of transitions from low-to-high-to-low
dimensions. The collapse of the high-dimensional cog-
nitive space to a low-dimensional subspace of attractors
demarcates the intermittent cognitive activity. The global
synchronization dynamics indicates the formation of per-
cepts and may serve as an indicator of high-level cognitive
experience.
Our analysis points to the cognitive significance of the

period between 3–4 s, which is divided into time segments
3–3.5 s and 3.5–4 s. In the first time segment, and in partic-
ular during the period 3.25–3.5 s, the frequency dispersion
around the mean drops dramatically due to high synchro-
nization across the cortex. This then is followed by a dra-
matic increase in dispersion between the period 3.5–3.75 s.
Both SA and AA range measures seem useful; perhaps
AA measures can provide more powerful discrimination.
Clearly, future detailed hypothesis tests are required to
validate the introduced measures as useful correlates of

classification performance based on the observed ECoG
amplitude and phase patterns. We can see that various
information-theoretic indexes capture the changes numer-
ically and may be used as neural correlates of cognition
and decision making.
We would like to leave the reader with some interest-

ing questions for further research in relation to human
awareness, consciousness, spirituality, mental health and
ethical behavior, under new emerging paradigms [33].
Could it be that intense eureka or ‘aha’ moments in scien-
tific research and in philosophical inquiry, or the reported
enlightenment moments in religious, spiritual or mysti-
cal experience would parallel the observed brief period of
desynchronisation followed by a period of intense synchro-
nization and after that a pattern of intermittency, leading
to the integration of the experience to a new cognitive
map? How could such exploration help people to operate
socially closer to a universal framework of ethics, together
with the restrictions imposed by habits, addictions, disease
and survival needs? Various experimental approaches will
be useful to find the answer to these challenging ques-
tions [34]. We hope our findings based on EEG analysis
motivate further studies towards the identification of neural
correlates of cognition and awareness experience through
the integration of various experimental paradigms.
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