Consumer Preferences for Annuity Attributes: Beyond NPV

forthcoming in Journal of Marketing Research

Suzanne B. Shu, UCLA
Robert Zeithammer, UCLA
John Payne, Duke University

July 7, 2015

Abstract

Decisions about life annuities are an important part of consumer decumulation of retirement assets, yet are relatively underexplored by marketing researchers studying consumer financial decision-making. In this paper we propose and estimate a model of individual preferences for life annuity attributes using a choice-based stated-preference survey. Annuities are presented in terms of consumer-relevant attributes such as monthly income, yearly adjustments, period certain guarantees, and company financial strength. We find that attributes directly influence preferences beyond their impact on the annuity’s expected present value. The strength of the direct influence depends on how annuities are described: when represented only via basic attributes, consumers undervalue inflation protection and preferences are not monotonically increasing in duration of period certain guarantees. When descriptions are enriched with cumulative payment information, consumers no longer undervalue inflation protection, but nonlinear preferences for period certain options remain. We find that among annuities with the same expected payout but different annual increases and period certain guarantees, the proportion of consumers choosing the annuity over self-management can vary by more than a factor of two.

Keywords

Financial decision making, annuities, conjoint analysis

Suzanne B. Shu: Associate Professor, Anderson School of Management at University of California, Los Angeles. 110 Westwood Plaza, Los Angeles, CA 90095. Phone: (310) 825-4818. Email: suzanne.shu@anderson.ucla.edu. Robert Zeithammer: Associate Professor, Anderson School of Management at University of California, Los Angeles. 110 Westwood Plaza, Los Angeles, CA 90095. Phone: (310) 736-8998. Email: rzeitham@ucla.edu. John Payne: Joseph R. Ruvane, Jr. Professor, Fuqua School of Business, Duke University. 100 Fuqua Drive, Durham, NC 27708. Phone: (919) 660-7850. Email: jpayne@duke.edu. This research supported by grants to the first and third authors from the Russell Sage and Alfred P. Sloan Foundations.
With baby boomers now retiring at the rate of almost 10,000 per day, the issue of
decumulation of retirement assets is increasingly important to economists, public policy experts,
and the financial services industry. It should also be of interest to researchers in marketing
because consumers in the market for decumulation products, such as annuities, face a choice
problem with large financial stakes, limited learning opportunities, difficult consumption
tradeoffs, multiple sources of uncertainty, issues of trust and branding, and long time periods. All
of these aspects of the decumulation problem are topics on which marketing research can offer
important insights.

This paper studies the structure of consumer preferences for life annuities – an important
class of decumulation products. We employ a choice-based conjoint analysis to measure
consumer preferences and relate them to the underlying financial value of the products.
Annuities, as well as many other financial products, provide a unique setting for choice modeling
because most annuity attributes have calculable expected present value that can be directly
compared to consumers’ revealed utilities. Consequently, we are able to see whether an attribute
influences demand only through its contribution to the normative net present financial value of
the annuity product (“NPV”), or whether attribute values have psychological worth “beyond
NPV.” We find that a typical consumer choosing from a set of annuities does not merely
maximize the expected financial value, but also reacts to several product attributes directly -
expressing preferences beyond the effect of attributes on the financial value. For example, most
consumers overvalue medium (10-20 years) levels of period-certain guarantees relative to their
financial impact, but generally undervalue inflation protection via annual increases in payments.

Our second goal is to understand how annuity attribute valuations are affected by changes
in information presentation. Varying information presentation has long been part of the toolkit
available to marketers, and is increasingly seen as a tool available to policy makers in their
efforts to “nudge” consumers toward purchases that may increase consumer welfare (Thaler and
Sunstein, 2008). We predict that the strength of the influence of attributes on consumer
preferences beyond their impact on NPV will depend on how the annuity products are described. In one of the presentation conditions of our study, we describe each annuity product in terms of its basic attributes as per current industry norms. In another presentation condition, we enrich the product description with non-discounted cumulative payment information for a few representative “live-to” ages. Note that this “enriched information” condition does not provide consumers with additional information – it merely helps them get a sense of possible payoffs given exactly the same underlying attributes. Not surprisingly, we find that consumers in the enriched information condition undervalue inflation protection attributes less than consumers in the basic information condition. In contrast to this partial de-biasing effect of the enriched information, preferences for period-certain guarantees continue to exhibit very similar under- and over-valuation as in the basic information condition. We also find that enrichment of information increases the baseline preference of annuitization over self-management.

In each information condition, we also find significant individual differences in preferences for annuity attributes correlated with consumer characteristics such as amount saved for retirement, subjective life expectancy, numeracy, and perceived fairness of annuities. Most of these characteristics are correlated with preferences in a qualitatively similar manner regardless of the product description condition, with the exception of subjective life expectancy which is positively correlated with a preference for annual increases only in the enriched information condition.

Our findings provide several insights regarding consumer annuity choice and ways that marketers can improve consumers’ acceptance of annuitization without paying out more money in expectation. For example, a marketer can increase demand for an annuity of a fixed expected present value by reducing the amount of an annual increase and using the resulting savings to fund an increase in the duration of the period-certain guarantee up to 20 years. Which products the issuer should offer depends on the way they will be described (shorter period-certain guarantees are optimal under enriched information than under basic information). Regardless of
the information presentation, we find that such “repackaging” of the payout stream can have a large effect on demand, sometimes even doubling the take-up rate of annuities in the population we study. Before presenting the detailed methods and results of the conjoint analysis of annuity product features we next turn to brief review of the role of annuities in the retirement journey.

THE ROLE OF ANNUITIES IN CONSUMER DECUMULATION

As one approaches retirement there are a number of decisions that are difficult, including questions of when to retire from work and when to begin claiming social security benefits (Knoll 2011, Coile et al. 2002). The most complex decision of all, however, is how to optimally spend down saved assets. In the growing body of research on consumer financial decision making (Lynch 2011), the emphasis is often on the accumulation stage of wealth management, addressing issues such as retirement savings decisions (Soman and Cheema 2011, Hershfield et al. 2011) or investment choice (Strahilevitz, Odean, and Barber 2011; Morrin et al. 2012). Although these issues of how to accumulate wealth during the 30 years prior to retirement are crucially important for workers, the decumulation of wealth in the 30 years after retirement is also an important problem and thus far relatively unaddressed in marketing research.

The size of the decumulation problem is substantial, with approximately $9.2 trillion in retirement assets held in either defined contribution plans (e.g., a 401k) or IRAs (Benartzi et al. 2011). The consumer’s risks in consuming saved assets include either spending too quickly, in which case she may run out of money, or spending too slowly, in which case her consumption is severely constrained and she dies with unused funds. Also complicating this decision is the large uncertainty about life expectancy, a crucial piece of knowledge for determining the optimal intertemporal consumption path (Payne et al. 2013).

The economics literature has long recognized that life annuities are a compelling marketplace solution to the decumulation problem (see Benartzi et al. 2011, Davidoff et al. 2005, and Brown 2007 for reviews). The simplest form of a life annuity is the immediate single-payer
life annuity, in which a consumer exchanges a lump sum for a guaranteed stream of payments for as long as he or she lives. In a sense, life annuities offer the opportunity for the retiree to convert retirement assets saved via a defined contribution plan into an income stream more similar to a defined benefit (pension) plan. The implied insurance against outliving one’s assets is the biggest advantage of life annuities. Another advantage is that life annuities often pay out higher percentage returns than is normally feasible with self-managed accounts. For example, a life-annuity might pay a 6.8% annual rate of return rather than the 4% to 5% one would collect from a self-managed account. This higher return is a result of benefits to survivorship, since accounts of those who die early are used, in part, to pay income to annuity holders who continue to live. On the downside, however, a consumer’s purchase of a life annuity carries some disadvantages. First, one’s estate (heirs) receives no payment when one dies with a traditional type of life annuity; the money remains with the company that issued the annuity, implying a possible loss or negative return on the original purchase. Another disadvantage is a loss of control over the assets because the investment funds are given to the annuity company to manage, which may result in not benefiting from potential returns from stocks and other risky financial products (Milevsky and Young 2007). Issuing companies can vary in financial strength ratings, which is clearly important given the fact that the decision has implications for many years and because government backing for such products is dependent on state-level regulations. Finally, life annuities typically provide relatively poor liquidity (cash availability) in case of emergencies. Nonetheless, most economic analyses have concluded that the purchasing of a life annuity should be part of the decumulation strategies of most consumers. It has therefore been a puzzle that life annuities have not been more popular: research on choices among pre-retirees able to choose between annuities and lump sum payouts for their retirement savings finds that often less than 10 percent choose the annuity (Poterba, Venti, and Wise 2011; Johnson et al 2004).

As a result, companies offering life annuities have introduced a variety of product features in an effort to make them more attractive. These options include attributes such as
period-certain guarantees, deferred start dates, annual income increases to compensate for inflation, and joint annuities (e.g., for married couples). Period-certain options guarantee payments for a specified number of years, even if the annuitant passes away, with remaining payments going to designated heirs; after the specified number of years, a period-certain annuity becomes like a standard annuity with payments that continue until the individual dies. These annuities thus protect against total loss of the principal investment due to early death while still being able to offer income for life. Deferred start date annuities, also called longevity annuities, require a lower upfront payment in exchange for payouts that begin in the future as long as the purchaser is still alive by a set age. Offering annuities with consumer-oriented options, such as period-certain guarantees, carries financial tradeoffs; the issue for the offering company is whether consumers are willing to accept higher prices in exchange for these benefits.

Our focus is on understanding how the product features discussed in the previous paragraph are valued by consumers. The features are presumably offered in response to consumers’ needs. These needs consist of both economic concerns (risks of inflation, probability of receiving payouts) and psychological concerns (desire to provide for family, issues of fairness). Research on annuities has tried to assess the strength of these different needs, particularly as an explanation for differences in overall consumer demand for annuity products. While rational economic arguments can explain demand for some annuity features, several researchers have suggested that psychological factors also need to be considered (Brown 2007, Goldstein et al 2014). Whether the demand is based on purely economic concerns or driven by psychological needs can significantly influence a consumers’ willingness to pay for a given feature. A feature that addresses strong psychological concerns may be worth more to the consumer than it costs the company to offer, while one that does not meet a psychological need may be undervalued relative to its full financial impact.

Consider first one of the most popular annuity options: a period certain guarantee. An individual’s concerns about leaving a bequest in case of an early death might account for less
than full annuitization during retirement (Yaari 1965; Davidoff, Brown, and Diamond 2005; Brown 2007). Such bequest concerns could explain preference for period certain guarantees as a way to ensure that money is provided for heirs in the case of early death. However, bequest motives cannot explain patterns of nearly no annuitization and/or choice of period certain guarantees among people without heirs. A different explanation for the popularity of period certain options can be found by considering the decision using concepts from cumulative prospect theory (Tversky & Kahneman, 1992). For example, loss aversion may make annuities unattractive when consumers perceive the forfeiture of the annuity purchase price due to early death as a loss either to themselves or their family and heirs (Hu and Scott 2007). Furthermore, prospect theory suggests that the risk of losing the full value of the annuity may be further highlighted by the tendency to overweight small probabilities. Finding that period certain guarantees are overvalued by consumers relative to their expected financial value may indicate that these psychological concerns play a role in consumer demand for this feature.

Risks of inflation might also be expected to worry consumers and annuity providers sometimes offer annual increases as an annuity feature to deal with this financial concern. While inflation protection makes rational sense, consumers may be thinking of an annuity purchase more as a gamble or an investment than as a source of consumption income, which may weaken the perceived benefit of inflation protection (Hu and Scott 2007; Brown, Kling, Mullainathan, and Wrobel 2008; and Agnew, Anderson, Gerlach, and Szykman 2008). Further complicating valuation of annual increases are psychological biases in judging intertemporal payouts, especially those described in percentage rather than fixed terms (McKenzie and Liersch 2011). Research on intertemporal choice that documents differential discounting of gains and losses, predictions of resource slack, myopia and hyperopia, construal, procrastination, and/or intertemporal consumption all offer evidence that consumers are likely to undervalue long-run annual increases (e.g., Soman 1998, Zauberman and Lynch 2005, Shu 2008). Furthermore, consumer uncertainty surrounding judgments of future health, economic outcomes (e.g.,
inflation), and life expectancy can lead to biased evaluations of the future utility of those payouts. Taken together, we expect that consumers may undervalue the financial benefits of annual increases when selecting annuities.

Finally, rational consumers may worry about default risk by the annuity issuer. In the annuity marketplace, default risk is captured through financial strength ratings (e.g., AA or AAA) of the issuing company. Actual risk of default for companies with high ratings is quite low, but overweighting of small probabilities may cause individuals to perceive the risk as much higher. Babble and Merrill (2006) show that even a little objective default risk can have a large economic impact on annuity purchasing.

Given the complexity of annuity products and the psychological processes that affect how these attributes are evaluated, consumers’ preferences may be significantly influenced by how information about the annuities is presented as part of the choice process. As noted earlier, research on the impacts of different ways to present the same information has a long history in the field of consumer behavior (e.g., Russo 1977; Bettman and Kakkar 1977) and it is increasingly seen as a way to influence consumer welfare through variations in information architectures. A recent example of such information architectural changes are the new credit card statements that provide calculations on how long it will take a consumer to pay off his or her credit card balance with just the minimum required payment amount or a slightly increased monthly payment (Soll, Keeney and Larrick 2013). Specific to annuities, Kunreuther, Pauly, and McMorrow (2013, pg 142) have suggested providing “better and more convincing information on the attractive properties of annuities” and their potential long term payout as a solution to the annuity puzzle; our enriched presentation format offers an initial test of such a solution.

Beyond general population judgmental biases, individual differences in how consumers handle financial purchase decisions are important to consider. For example, recent findings

1 For example, from 1981 to 2008, no companies rated AAA by Standard & Poor have ever defaulted, and mean annual default rate for companies rated AA is 0.02%.
regarding consumers’ financial knowledge (both objective and subjective knowledge), financial literacy, numeracy, and overall cognitive ability offer important predictions for how consumers who differ in individual ability may react to annuity offerings (Fernandes, Lynch, and Netermeyer 2014; Hadar and Fox 2012; Peters et al. 2006; Frederick 2005). A comprehensive survey of all individual factors that may influence annuity choice is outside the feasibility of a relatively short consumer study, so we focus on individual measures that closely relate to the tradeoffs inherent in our chosen attribute set. In particular, we measure age, gender, retirement savings, numeracy, loss aversion, perceived fairness of annuity products, and subjective life expectations. We now turn to an experimental study designed to investigate how consumers value annuity attributes beyond their impact on NPV.

A STUDY OF CONSUMER PREFERENCES FOR ANNUITY ATTRIBUTES

To carefully measure how consumers value and make tradeoffs between annuity attributes, the remainder of this paper proposes and estimates a model of individual preferences for annuities using a discrete choice experiment (DCE). Our model is distinct from other applications of DCE in the sense that the product attributes jointly imply an expected present financial value of the product. Knowing the financial value of each product in our DCE allows us to see whether an attribute influences demand only through its contribution to the financial value or whether it also has psychological worth “beyond NPV”. We also apply our estimated model to the product-design problem, and characterize how marketers and policy makers can increase the consumer acceptance of annuities without necessarily increasing the expected payout.

The remaining sections proceed in four stages, as follows. First, we lay out our model, including how we chose attributes and how those attributes can be converted to an expected present value that is central to our model specification. Second, we describe our subject population and our methods, including an enriched information-presentation treatment hypothesized to affect participants’ value for particular attributes. Third, we describe our results,
presenting both model-free evidence and choice-model estimates. Finally, we suggest implications for the marketing of annuities, and suggest how specific attributes make annuities more appealing to particular demographic groups.

Study Design: Attribute Selection, Model Specification, and Statistical Optimization

Our discrete choice experiment consists of 20 choice tasks. In every choice task, we asked participants, “If you were 65 and considering putting $100,000 of your retirement savings into an annuity, which of the following would you choose?” They then saw three annuity options and a fourth no-choice option that read, “None: If these were my only options, I would defer my choice and continue to self-manage my retirement assets.”

Attribute selection. The attributes we use include starting income, insurance company financial strength ratings, amount and type of annual income increases, and period-certain guarantees. Each attribute can take on several levels selected to span the levels commonly observed in the market today (see Table 1).

We now briefly motivate why we selected these attributes and how we selected their levels for our study. Beyond starting income, which is clearly one of the most important financial attributes for an annuity, we include insurance company financial strength ratings to test the theory by Babble and Merrill (2006) that even a small default risk can have a large economic impact on annuity purchasing. We only included AA and AAA rating levels to focus on small differences in default risk near the top of the financial strength range, where many real-world annuity providers operate.

Including annual increases as one of our primary attributes allows us to test the importance of inflation protection in annuity purchases. The seven levels of annual income increases we use in the study include three increases expressed additively (e.g., “every year, payments increase by an amount $X”), three increases expressed multiplicatively (e.g., “every year, payments increase by Y\%”), and one level for no increase. We chose levels of additive increases and multiplicative increases that roughly match each other in the initial years of the
annuity in terms of the expected payout; for example, a 7% annual increase is roughly equal to a $500 annual increase for an annuity with starting monthly payments of $600. Inclusion of both percentage and fixed increases of similar amounts tests the possibility that individuals underestimate income growth for rates expressed in percentages (Wagenaar and Sagaria 1975, McKenzie and Liersch 2011). This misunderstanding of exponential growth may be especially important for individuals with low skills in financial literacy and numeracy (Lusardi and Mitchell 2007).

The third attribute we focus on is the period-certain guarantee. Period-certain guarantees include periods of 0 years (no period certain), 5 years, 10 years, 20 years, and an extreme option of 30 years. As documented by Scott, Watson, and Hu (2011) and Benartzi et al (2011), the purchase of a period certain guarantee on a life annuity is economically dominated by buying a combination of a bond and a deferred start annuity, making the popularity of this attribute in the marketplace a puzzle for standard economic theory. We do not examine this puzzle directly because our choice sets only include annuities and not combinations of annuities and bonds. Beyond standard risk aversion, several behavioral explanations are possible for why consumers value period certain guarantees. First, they may misestimate a guarantee’s impact on payout relative to life expectations. The most likely misestimation story is that consumers over-estimate the impact of short guarantees (e.g., a 5-year guarantee has almost no real impact) and under-estimate the impact of very long guarantees. Second, they may be concerned about the loss of the annuity principal (especially for heirs) in the case of an unexpected early death. Such prospective loss aversion could make short period certain options especially appealing, and have less effect on longer options. By assessing the valuation of period certain attributes beyond their impact on NPV, we may gain some insight into these potential explanations for their popularity.

Finally, we note that our design includes annuities with combinations of income and period-certain terms not currently available in the market but potentially available in the future. We also test annuities with expected (actuarial) values substantially in excess of what would be
available on the market relative to their $100K purchase price. These design choices represent a
strength of our stated-preference approach for two reasons: first, they allow us to separately
identify the impact of different attributes that may be correlated in secondary data, and second,
they allow us to base counterfactuals on data rather than extrapolation.

Individual differences. The multiple responses per individual allow us to estimate each
individual’s indirect utility of an annuity contract as a function of the contract’s attributes, both
directly and via their contribution to the expected payout (calculated using the Social Security
Administration’s gender-specific life expectancy tables). To try and explain some of the
population heterogeneity we observe, we collect several key demographic and psychographic
measures from each participant. Because life expectancy is a key life cycle input for
decumulation choices, we ask each individual how long they expect to rely on their retirement
funds by having them indicate the probability that they will live to ages 65, 75, 85, and 95
(Payne et al. 2013). Longer life expectancy should both raise consumer preference for
annuitization, increase the value placed on inflation protection, and reduce the value placed on
period certain guarantees. We also collect other demographic information that should
theoretically impact preferences for annuities including gender and retirement assets.

Given the complexity of annuities, we expect more numerate people to like annuities
more and understand the attributes such as annual increases better. To assess numeracy and
analytical thinking, we include five numeracy questions and three cognitive reflection task
(CRT) questions for a subset of our total survey population (Weller et al. 2012, Frederick 2005).

We also administered an additional set of questions to measure other individual
differences in key behavioral constructs thought to affect preference for annuities, including
perceived fairness of annuities and loss aversion (Benartzi et al 2011, Hu and Scott 2007). (See
Web Appendix for details on all questions.) Research has suggested perceived fairness is an

2 Numeracy measures were limited to a subset (about 65%) of the total population. For participants who did not
complete the numeracy scale, we substituted median numeracy during the analysis. This substitution creates an
error-in-variable problem, making all of our inference about the effects of numeracy conservative.
important consideration for consumers of financial products as well as a strong input into attitude measures for such products (Bies et al. 1993). We measure perceived fairness for annuities through a single item direct question based on Kahneman, Knetsch, and Thaler (1986). Finally, because loss aversion has been posited as a potential explanation for the annuity puzzle, participants responded to a set of nine questions that asked them to choose between mixed gambles, thus providing individual-level loss-aversion measures (Brooks and Zank 2005).

Information presentation treatment. To test how presentation of information about annuity choices affects attribute valuation, our study tests two versions of the annuity choice task, between subjects. In the basic condition, each annuity is described based only on its primary attributes of starting monthly (and annual) payments, annual increases, period certain options, and company rating. This presentation is modeled on typical presentations of annuity attributes by issuers in the market today. Our second “information enriched” condition provides the same information but also includes a table of cumulative payout per annuity conditional on living until the ages of 70, 75, 80, 85, 90, and 95. These cumulative tables do not provide any additional information beyond what the participant could calculate directly using the provided attributes. However, we predict that by “doing the math”, participants will be able to more clearly see the joint cumulative impact of all attributes on expected payouts and hence align their choices with it better. Sample presentations for each condition are shown in Figures 1a and 1b.

Model specification. Each of the 20 choice sets in our study consists of $K=3$ alternatives (annuities), with the kth alternative in the nth choice set characterized by a combination of the attributes presented in Table 1.\footnote{Full details on the exact attributes tested in all 20 choice tasks are provided in the Web Appendix.} Our baseline utility specification is based on the variables that should theoretically drive annuity choice, namely, the expected payout and the financial strength rating of the issuer. We denote the expected payout of the annuity V, and calculate it from the
monthly income, period certain, and the annual increase (if any) of the \(k \)-th annuity in the \(n \)th choice set as follows:

\[
V_{n,k} = \sum_{\text{age}=65}^{65+pc_{n,k}} \delta^{(\text{age}-65)} \left(12 \times income_{n,k,\text{age}} \right) + \sum_{\text{age}=66+pc_{n,k}}^{120} \delta^{(\text{age}-65)} \Pr(\text{alive at age}) \left(12 \times income_{n,k,\text{age}} \right)
\]

where \(pc_{n,k} \) is the length of the period-certain guarantee (if any), \(\Pr(\text{alive at age}) \) is the probability of being alive at a given \(\text{age} \) past 65 (conditional on being alive at 65)\(^4\) based on the gender-specific life expectancy Social Security tables (Social Security Administration 2006)\(^5\), \(\delta \) is an annual discount factor set to 0.97 following 2011 OMB guidelines (OMB Circular A-94), and \(income_{n,k,\text{age}} \) is the monthly income provided by the \(k \)-th annuity in the \(n \)th choice set when the buyer reaches the given \(\text{age} \). The latter is in turn determined by the starting income and the annual increases (if any). Note that for annuities with the period-certain guarantee, we implicitly assume that the annuity buyer cares equally about payout to himself/herself, and the payout to beneficiaries in the case of an early death. In our choice model, we assume that the buyer cares about the expected net present gain over the purchase price \(V_{n,k} - price_{n,k} \). Since all annuities in our study cost \(p=\$100,000 \), the variation in expected gain is driven completely by the variation in \(V_{n,k} \), so the model specification is almost identical to assuming consumers care about \(V_{n,k} \). A rational buyer should also care about the financial strength of the company as measured by the AAA versus AA ratings. We include both the main effect of financial strength and its interaction with expected gain in our model. To motivate the interaction, note that the same expected gain is more certain when provided by an AAA versus AA company, so a rational buyer should value it more, ceteris paribus.

\(^4\) Note the study participants are asked to imagine they are already at age 65 when they are buying the annuity, and thus no adjustment should be made for actual current age or the chance of living until 65.

\(^5\) Annuity issuers often maintain their own mortality tables which are adjusted for possible adverse selection among annuity purchasers. The effect on our estimates of using SSA mortality tables rather than issuer specific rates is a possible underestimation of the expected NPV per annuity. Thus, any estimates of under valuation per attribute should be considered conservative.
In addition to the effect of the total expected gain and the company’s financial strength suggested by normative theory, we let several attributes enter utility directly to capture the “beyond NPV” idea discussed above. Specifically, we include the type and amount of annual increase and the level of the period-certain guarantee. All levels of these additional attributes are dummy coded and contained in a row attribute vector $X_{k,n}$.\(^6\) We exclude starting income from $X_{k,n}$ to avoid strong collinearity: we find that the expected gain is too correlated with starting income for the model to separately identify the impact of starting income on utility beyond its impact on the expected payout. However, we did analyze an alternative specification of our model that replaces the expected net present gain with starting income, keeping the rest of the same (estimates of this specification are available in Table 4c and the Web Appendix). Comparing our estimates with those from the alternative specification will be useful in interpreting our results.

Given the expected payout $V_{n,k}$, the dummy variable $AAA_{n,k}$, the price of the annuity p (which we fixed to $100,000 throughout the study by design) and the $X_{k,n}$ variables, we model the respondent j’s utility of the k-th annuity in the nth choice set as a linear regression:

$$U_{n,k,j} = \alpha + \beta_j (V_{n,k} - p) + \gamma_j AAA_{n,k} + \delta_j AAA_{n,k} \times (V_{n,k} - p) + X_{n,k} \theta_j + \epsilon_{n,k,j}$$ \hspace{1cm} (2)

where $\epsilon_{n,k,j} \sim N(0,1)$ and we normalize the utility of the outside (“none of the above”) alternative $k=0$ to zero to identify the parameters\(^7\): $U_{n,0,j} = 0$. This normalization implies that the utility of inside alternatives should be interpreted as relative to self-management of a $100,000 investment. Together with a simplifying assumption that $\epsilon_{n,k,j}$ are independent, our model

\(^6\) We do not include interactions of these direct effects with AAA for two reasons: 1) the normative effect of a risk-reduction due to stronger financial health is already captured in the interaction between AAA and expected net present gain and 2) estimating such interactions in addition to all the other parameters of interest requires a significantly larger number of survey questions, which is important to tradeoff against respondent fatigue.

\(^7\) See McCulloch and Rossi (1994) for a detailed discussion of parameter identification in a multinomial probit.
becomes a constrained version8 of the multinomial probit model (Hausman and Wise 1978). The \(A \) individual-level utility parameters to be estimated are \(\{\alpha_j, \beta_j, \gamma_j, \delta_j, \theta_j\}_{j=1}^J \), where \(\theta_j \) is a column vector of the same length as \(X_{k,n} \), and the rest are scalars.

To pool data across respondents \(j=1,2,\ldots,J \) while allowing for heterogeneity of preferences, we use the standard hierarchical approach following Lenk et al. (1996). Please see Rossi et al. (2005) for an overview of hierarchical linear models. A row vector of \(M \) characteristics \(Z_j \) characterizes each respondent, and respondents with similar characteristics tend to have similar preferences following a multivariate regression:

\[
\begin{bmatrix}
\alpha_j, \beta_j, \gamma_j, \delta_j, \\
\end{bmatrix} = Z_j \Delta + \tau_j \quad \text{where} \quad \tau_j \sim N(0, \Sigma)
\]

where \([…]\) indicates a concatenation of all parameters into a row vector, \(\Sigma \) is an \(A \times A \) matrix and \(\Delta \) is an \(M \times A \) matrix, where \(A \) is the number of individual level utility parameters and \(M \) is the number of individual level demographic and psychographic characteristics. The baseline parameter from which individuals deviate according to their characteristics \(Z \) is the first row of \(\Delta \) in that we set the first element of each \(Z_j \) to unity. To complete the model, we use standard conjugate priors for \(\Sigma \) and \(\Delta \), namely,

\[
\Sigma \sim \text{InverseWishart} \left(\kappa_0, S_0 \right) \quad \text{and} \quad \text{vec} \left(\Delta \right) \Sigma \sim N \left(\text{vec} \left(\Delta_0 \right), \Sigma \otimes I \sigma^2_\Delta \right).
\]

Although these priors allow us to add a priori scale information in \(S_0 \) and effect information in \(\Delta_0 \), we try to let the data speak, and use proper but diffuse priors. Our specific settings are \(\kappa_0 = \# \text{UtilityParams} + 3, E(\Sigma) = I, \Delta_0 = 0, \) and \(\sigma^2_\Delta = 100 \).

Statistical design optimization. Given the attribute levels in Table 1 and the model described above, we used SAS software (an industry standard) to generate the optimal choice-based survey design. We created the 20 choice sets using the \%ChoicEff macro in SAS (Kuhfeld

8 The restriction of one of the scalar elements of the covariance of the \(\epsilon_{n,j} \) vector to unity is standard. The restriction of the entire covariance matrix to identity simplifies estimation and reflects our belief that the unobserved shocks associated with the individual annuity profiles are not heteroskedastic and not mutually correlated. The resulting model is sometimes called “independent probit” (Hausman and Wise 1978).
2005), which finds utility-balanced efficient designs for choice-based conjoint tasks (Kuhfeld et al. 1994, Huber and Zwerina 1996). Because the design of the choice tasks is not intended to be the main contribution of our study, we merely strive to follow current practice and arrive at a reasonable design. Note that the design cannot be orthogonal by construction: the expected NPV is a combination of the other attributes. The non-linearity of the NPV formula allows us to still estimate the direct (beyond NPV) impact of each attribute other than starting income.

Estimation methodology. To estimate the parameters of our choice model, we follow a standard Bayesian procedure to generate draws from the posterior distribution of all parameters using a Gibbs sampler. Please see Rossi et al. (2005) for a detailed description of setting up the Gibbs sampler for a hierarchical linear model. We ran the Gibbs sampler for 50,000 iterations, discarding the first 10,000 as burn-in iterations and using the remaining 40,000 draws to conduct our counterfactual exercises. As in the case of the experiment design, the estimation method is standard in the field.

Study Implementation: Subject Recruitment and Detailed Survey Procedure

Participants. We recruited participants through a commercial online panel from Qualtrics. For this project, we limited participation to individuals between the ages of 40 and 65 because this target group is the most appropriate for annuity purchases. We placed no limit on current retirement savings, but we collected data on savings as part of our demographic measures so that we could perform an analysis of how financial status affects preferences.

Because any survey attracts some respondents who either do not understand the instructions or do not pay attention to the task, we included an attention filter at the start of the survey and excluded participants who did not pass the filter. Our estimation sample consists of 334 respondents in the basic treatment and 323 in the enriched information treatment. Table 3 summarizes the respondent demographic and psychographic characteristics exactly as they are coded in the Z variables in equation 3 of the model.
Procedure. We first presented participants with short descriptions of the annuity attributes being investigated (monthly income level, annual income increases, period-certain guarantees, and company ratings) as well as the full range of levels for each of these attributes. We told them the annuities were otherwise identical and satisfactory on all omitted characteristics. We also told them all annuities were based on an initial purchase price of $100,000 at age 65, consistent with prior experimental work on annuity choices (e.g., Brown et al. 2008). We then asked each participant to complete 20 choice tasks from one of the two conditions. To control for order effects, we presented the choice tasks in a random order. Figure 1 provides a sample choice task and illustrates the enriched information treatment. After completing all 20 choice tasks in their assigned condition, participants were asked to fill out the additional demographic and psychographic measures.

Preliminary Model-free Evidence of Attribute Impact on Utility “beyond NPV” and the Importance of the Information-Presentation Treatments

Before we turn to estimation results for the model in equation 2, we present model-free evidence that attributes matter beyond their impact on the expected present value. Consider first the aggregate results for the choice task provided in Figure 1. The table presented in Figure 1c presents the average (across genders) expected payouts, as well as the total expected payouts, and the choice shares of the three alternatives in the two treatments. If consumers cared most about the expected payout, they should prefer annuity Option A in Figure 1 because it delivers substantially more expected value than the other two options. Instead, respondents prefer B (which dominates C but not A in payouts), especially in the enriched treatment, suggesting that the annuity attributes seem to have an impact on preferences beyond their effect via expected payout and the enriched information treatment alters this impact. In addition to considering which option respondents selected given that they selected an annuity, we can also examine the choice to self-manage their retirement assets. Figure 1c shows that 36% of respondents selected
“none” despite all three annuities offering expected payouts with an expected payout over $160K for a purchase price of $100K, suggesting that about a third of our respondents dislike annuitization in general. The proportion of respondents selecting “none” drops to 24% when the information is enriched, suggesting that some but not all of the general disliking of annuitization can be explained by consumers’ inability to “do the math”.

Drawing conclusions from a single task is limiting, so we conducted a more systematic investigation of both “beyond NPV” impact of attributes and the effect of information enrichment across all choice-tasks. Consider the “beyond NPV” effects first. Our analysis focuses on two specific attribute levels - the 7% annual increase and the 20-year period-certain guarantee – but in principle it could be conducted for any other level. Our study included five choice tasks in which the highest NPV alternative for each gender involves a 7% annual increase (and the NPV of that alternative is solidly above $100K in each of those tasks). If consumers cared mostly about the expected payout, the highest-NPV alternative should be chosen frequently, but Table 2a shows that in the basic information treatment, it was selected only about 17 percent of the time when it involved a 7% annual increase. That number is not only surprisingly low, it is also significantly smaller than the 21 percent of the time the highest-NPV alternative was selected in thirteen other tasks that did not involve a 7% annual increase ($p<0.01$ based on a test that first computes the differences in probabilities within each subject, and then averages over subjects). The difference is also significant and has the same sign in the enriched information condition. These results suggest that the 7% annual increase attribute level is under-valued by consumers, i.e. that it has a negative “beyond NPV” effect on preferences.

Our study also included six choice tasks in which the lowest NPV alternative involves a 20-year period certain guarantee. If consumers cared mostly about the expected payout, the lowest-NPV alternative should be selected the least. Yet, Table 2a shows that in the basic

9 $5+13=18<20$ because the NPV ordering depends on gender in two tasks.
information condition, it was selected 25 percent of the time when it involved a 20-year period-certain guarantee. This percentage is significantly \(p<0.001 \) higher than 15 percent among twelve other tasks in which the lowest-NPV alternative did not involve 20-year period certain. These results suggest that the 20-year period certain attribute level is over-valued by consumers, i.e. that it has a positive “beyond NPV” effect on preferences. An important caveat to the comparisons discussed in the previous two paragraphs is that the two groups of tasks that do and do not involve a particular attribute differ in other ways, so the effects we find are not necessarily attributable solely to the attribute levels we put under the microscope. However, thanks to the near-orthogonality properties of experimental designs, the potential confound due to systematic variation in other attributes between the two groups of tasks is minimal.

Now consider the suggestion from Figure 1c that information enrichment may increase the attractiveness of annuities and reduce the number of people who choose to self-manage their decumulation.\(^\text{10}\) Table 2b confirms this effect more systematically by looking across all choice-tasks: we find that information enrichment increases the percent of subjects who never select the outside option from 23.7% to 38.7% (standard error=3.6%, \(p<0.01 \)), and increases the average number of tasks in which a subject selects one of the inside choices from 14.6 to 15.8 (standard error=0.4, \(p<0.01 \)). Given that a subject selects one of the annuities instead of self-management, the enriched information steers him or her towards higher-NPV alternatives, but the effect is small: across all choices when an annuity is selected, the information enrichment increases the share of the highest-NPV alternative from 33% to 40% (standard error with \(N \) set conservatively to number of subjects is 3.8%, \(p=0.08 \)), and reduces the share of the lowest-NPV alternative insignificantly from 32% to 27% \((p=0.12) \). All these results together imply that the enrichment improves the alignment of choices with the expected payout, but the resulting alignment is far

\(^{10}\) It is important to note that the expected payout of most of the annuities we offer exceeds the price of $100,000, so an increased understanding of the payoff amount should increase the number of people who choose to annuitize. Thus, we are not measuring the effect of enrichment per se, but the effect of enrichment combined with annuity alternatives that should be attractive to a rational buyer.
from perfect, leaving room for effects of attributes beyond NPV.

Estimation Results: Population Average Parameters and their Interpretation

Although our experiment involved 20 choices between four options (three annuities and one outside option), a substantial proportion of respondents did not like any of the annuities on offer. Specifically, between 15 and 20 percent of respondents selected self-management in every task (see Table 2b for details). Some of the annuities in our design provided well over $200K in expected payout, in exchange for the $100K price of the annuity (held constant throughout). Therefore, we conclude that some people simply seem to dislike the idea of an annuity a priori, and are unwilling to consider these products. To be conservative in our analysis, we retain these “annuity haters” in the full estimation.\(^{11}\)

Tables 4a and 4b show the estimated posterior means of all the model parameters, with the individual-level parameters \(\alpha, \beta, \gamma, \delta, \theta\) averaged over the respondents, by information treatment. The posterior means of the population-averaged \(\alpha, \beta, \gamma, \delta, \theta\) parameters can be interpreted as the average marginal effects on utility of the associated attribute. Note that other than the expected gain attribute (the expected value minus price), all other attributes enter utility as dummy variables, and so they measure the change in utility relative to the baseline level set to \{AA, no annual increase, no period certain\}. For example, the -0.54 coefficient on the “annual increase 3%” attribute in the basic information treatment (Table 4a) means that on average, annuities with an annual increase 3% are valued 0.54 utiles less than annuities that deliver the same expected gain with no annual increases, ceteris paribus. Note that the population mean of each coefficient is not the marginal effect of the associated attribute on probability of choice. One can only interpret the sign of a coefficient to infer the direction of the effect. The

\(^{11}\) Analyzed in isolation, these respondents do not provide information about the parameters of interest. However, the Bayesian hierarchical prior partially pools their responses with responses of demographically and psychographically similar people, allowing inference. Analyses done both with and without these individuals excluded yield consistent results; please ask authors for details.
counterfactual simulations in the next section will offer a precise measurement of the marginal
effects on the probability of choice (a.k.a. demand).

Because we are estimating a choice model, the parameters cannot be directly compared
across treatments because of the well-known scaling problem (Swait and Louviere 1993). One
transformation of the parameters that can be meaningfully compared is their ratio, and the most
interesting ratio to consider is the ratio of “beyond NPV” parameters \((\alpha, \gamma, \theta)\) to the expected gain
parameter \((\beta\) for AA annuity, \(\beta+\delta\) for AAA annuity). Table 5 reports the standardized estimates
for a AAA annuity, by treatment, setting the unit of currency to $100. We call this ratio a
“willingness to pay beyond NPV” (hereafter WTPbNPV) because for every attribute level, it
measures the amount of expected present gain (delivered through changing starting income or
other attributes) that would compensate for the presence of an attribute level relative to the
baseline level of the same attribute. For example, the -$27.1 WTPbNPV of the “annual increase
3%” attribute means that on average, our respondents are indifferent between an annuity that
includes a 3% annual increase and delivers an expected gain of $100, and another annuity that
does not include annual increases and somehow (presumably via other attributes) delivers the
same expected gain plus -$27.1, namely an expected gain of $72.9. Thus, WTPbNPV is
willingness to pay while keeping the expected payout constant.

The WTPbNPV concept arising naturally from our proposed model specification can be
contrasted with a more standard marginal willingness to pay (hereafter WTP) that results when
the same ratio is calculated under the starting income model specification, in which the expected
gain is replaced with starting income. Table 5 also contains all such “standard” WTP estimates;
the raw parameter estimates of that specification (analogues of Tables 4a and 4b) are available in
Table 4c and web appendix Table A4. For example, the WTP of $40.3 for the 3% annual
increase means that on average, our respondents are indifferent between an annuity that includes
a 3% annual increase and $100 of additional starting income and an otherwise identical annuity
that does not include annual increases but involves $140.3=$100+$40.3 of starting income.
Comparing the WTPbNPV to WTP highlights the novelty of our model. Note that since WTPbNPV is measured in terms of expected gain and WTP is measured in terms of starting monthly income, the dollar quantities are not comparable between the two model specifications. However, one can safely compare their signs. In the case of 3% increase, the WTP is positive, meaning that 3% increase is more valuable than no increase while keeping initial monthly income and all other attributes the same. On the other hand, the WTPbNPV is negative, meaning that 3% is less valuable than no increase while keeping the expected payout the same.

Estimation Results: Average Preferences in the Basic Information Treatment

We first consider the results for the basic information treatment. Several conclusions can be drawn from the parameters (in Table 4a) and their associated WTPbNPVs (in Table 5). As expected, the average coefficients on both the expected gain and its interaction with the AAA rating are positive. The insignificant coefficient on the AAA dummy shows that consumer preference for financially safe issuers manifests itself solely via an increased weight on expected gain, and not as a shift in the intercept of the utility function. A qualitative comparison with the starting income model specification rules out a simplistic theory about the antecedents of the significant interaction between AAA and expected gain: Under the starting income model specification (Table 4c), neither the AAA dummy nor its interaction with starting income are significant at the population level, suggesting that the significant coefficient on \(\text{Expected_gain}X\text{AAA} \) is not merely capturing the respondents’ higher valuation of starting income when it is provided by a AAA issuer. Instead, the respondents seem to value some NPV-like combination of the starting income with other attributes (annual increases and/or certainty guarantees) more when it is provided by an AAA issuer.

The coefficients on the annual-increase and period-certain dummies are mostly significant and often large, indicating consumer behavior is not well captured by using only the expected payout and financial-strength variables. We discuss each of the “beyond NPV” influences from these different attributes in turn.
Annual increases. The negative signs on all of the percentage increase coefficients suggest that consumers systematically undervalue the benefits of annual payment increases. From the WTPbNPV estimates, we can see that the magnitude of the undervaluation can be large, especially for the percentage increases. For example, the WTPbNPV of -$64.5 on the 7% annual increase means our respondents are indifferent between an annuity that generates an expected gain of $100 with a constant monthly income, and another annuity that generates $164.50 expected gain by starting at a lower monthly income level and adding 7% per year. In contrast, the WTPs under the starting income model specification are all positive. Together, these results indicate that consumers pay attention to increases and value them positively, but they systematically undervalue them relative to their true expected value.

The additive increases exhibit a similar pattern, but they are generally under-valued less, echoing the results of McKenzie and Liersch (2011). To see the difference in Table 5, recall that we selected the levels of annual increases as pairs matched across the type of increase (additive vs. percentage). Specifically, the $500/year increase results in approximately\(^\text{12}\) the same expected payout as the 7% increase, and the ($300, 5%) and ($200, 3%) pairs are matched analogously. Therefore, we can compare the WTPbNPV numbers within these matched pairs, and conclude that the average consumer prefers additive increases to percentage increases, ceteris paribus. In a later section, we quantify the difference in terms of demand by simulating the magnitude of the effect of various increases on total market demand using counter-factual experiments.

Period certain. The positive average coefficient on the 20-year period-certain guarantee suggests consumers like this option beyond its financial impact on the expected payout. Conversely, the short (5-year) and very long (30-year) period-certain guarantees are undervalued. The WTPs under the starting income model specification reveal that consumers do not only under-value the 5-year period certain while keeping expected payout the same, they also

\(^{12}\) The magnitude of the difference in expected payout depends on gender, starting income, and other attributes.
undervalue it relative to no period certain while keeping other attributes the same. Moreover, the WTP for a 30-year period certain is about half the WTP of a 20-year period certain despite the much higher expected payout from the former. Therefore, the inverse-U pattern we find is not an artifact of our specification or our particular calculation of the expected gain.

Note that this inverse-U pattern does not fit well with either of the theories proposed in the literature as explanations for consumers’ overall preference for period certain options: both underestimation of life expectancies and prospective loss aversion should lead to over-valuation of short (5 year) options. Our empirical results suggest consumers do not simply prefer any period-certain guarantee to none. Instead, they have strong preference for medium length periods but generally dislike long and short options. In a later section, we measure the magnitude of the effect of the period-certain guarantee on total market demand using counter-factual experiments. We now consider how the average preference shifts due to the enriched information treatment.

Effect of the Enriched Information Treatment on Average Preferences

Recall that only the standardized coefficients (WTPbNPV, in Table 5) can be meaningfully compared across treatments. Table 5 provides both the WTPbNPVs for the enriched information treatment and the difference between treatments.

We offer three observations: First, the magnitudes of the WTPbNPVs for annual increases are much smaller in the enriched condition, thereby indicating the apparent disliking of the increases in the basic treatment may be due to the subjects’ inability to “do the math” on compounding, and not to a more fundamental aversion. The WTPs under the starting income model specification all increase, supporting the interpretation that respondents now value increases more. At the same time, however, the WTPbNPVs are still negative, indicating that the respondents still undervalue increases even in the enriched information condition.

Second, the difference between additive and percentage increases mostly vanishes in the enriched treatment, with the exception of the (7%, $500) pair which still exhibits a larger under-valuation of the percentage increase. But even in that extreme pair, the dollar difference between
the WTPBNPVs is reduced from about $33 to about $18. This finding agrees with prior work in
the literature on individuals’ difficulty with compounding in financial decisions (e.g. Wagenaar
and Sagaria 1975, McKenzie and Liersch 2011). By seeing a table of cumulative payouts,
individuals can better appreciate the impact of the percentage increases over time.

Finally, respondents in the enriched treatment continue to exhibit the inverse-U
relationship between preferences and the duration of period certain guarantees (even under the
starting income model specification), but the peak of the preference shifts towards shorter
periods (10-year becomes the most over-valued). The persistence of the inverse-U relationship
across the two information treatments suggests the relationship is not fundamentally driven by
mis-calculation or inability to “do the math” when estimating guarantees’ impact on payout.

Estimation Results: Population Heterogeneity of Preferences

We find a lot of heterogeneity in preferences, some of which can be explained by
variance in demographics and psychographics, and some of which remains unexplained. The
unexplained part (the square root of the posterior mean of Σ) is shown in Tables 4a and 4b to
give a sense of its magnitude. The average of the Δ parameter (also in Tables 4a and 4b) captures
the part of the heterogeneity of preferences explained by demographics and psychographics (see
equation 3).

The most easily interpreted are the effects of the demographics and psychographics (Z)
on the intercept of utility (α), that is, on the individual’s baseline liking of annuities. One effect
stands out as large: regardless of the information treatment\(^\text{13}\), we find that perceived fairness of
annuities is strongly correlated with their baseline liking. In the enriched information treatment,
individuals with higher levels of perceived fairness also value expected gain more. In the basic
information treatment, individuals with higher levels of perceived fairness also show increased
liking of annual increases beyond NPV, but not increased enough to de-bias them.

\(^\text{13}\) Recall that we cannot compare the coefficients between Tables 4a and 4b directly (Swait and Louviere 1993). We
thus confine ourselves to broad qualitative observations of the effect of the enriched information on our estimates.
Several other effects of demographics and psychographics also deserve a mention: As one would expect, more numerate individuals care more about the expected payoff regardless of treatment. More surprisingly, they also undervalue annual increases even more than less numerate people, especially in the basic information treatment. Finally, as a rational model would predict, higher life expectancy increases the liking of annual increases, but this effect only exists in the enriched information treatment. To see how much longer than average a respondent needs to expect to live to eliminate the under-valuation of annual increases, one can calculate the ratios of the population-average beyond-NPV coefficients and the \(\Delta \) coefficient on demeaned life expectancy. The result is between 8 and 17 years, i.e. between one and two standard deviations of life expectancy (from Table 2). Hence, we find that the enriched treatment leads to more accurate valuation of annual increases for people who expect to live more than one standard deviation longer than the average life expectancy in the population, an important finding for annuity sellers concerned about both consumer targeting and adverse selection.

The population-level parameters (\(\Delta \)) also shed light on which consumers are most sensitive to period-certain guarantees. The under-valuation of 5-year period certain guarantees is only present in the basic information treatment, and it is almost completely driven by people with less than $75K of savings; the \(\Delta \) coefficients of retirement savings over $75K on the beyond-NPV valuation of 5-year period certain (0.57 and 0.61) compensate for the -0.65 constant in the same regression. Surprisingly, neither lower life expectancy nor loss aversion significantly increases the preference for a longer period-certain guarantee in either information condition. Instead, we find the under-valuation of 30-year period certain correlated with being male, especially in the basic information condition. In the enriched information condition, the same under-valuation is also correlated with having retirement savings over $150K. Why individuals with low savings undervalue short guarantees in the basic treatment, and individuals with high savings undervalue long guarantees in the enriched treatment, is unexplored in any current theories of annuity choice; further research on how individuals interpret such options is needed.
Retirement savings also play another role: people with a high level of retirement savings (over $75K) show stronger overall dislike for annuities when they see the contingent cumulative payout tables. Whether these individuals are confident that they can self-manage their assets better without annuities, or are evaluating the payback on an annuity in an investment frame (Brown et al 2008), providing them with cumulative payout information does not seem to increase overall liking for annuities as much as for other respondents. Since we do not collect information about Social Security eligibility from our respondents, it is possible that this retirement savings measure is correlated with expected Social Security benefits, and the Δ parameter on retirement savings may simply be capturing the unmeasured effect of Social Security eligibility as a substitute for annuitization.

Counterfactual Simulations of Market Demand

Population averages of the utility coefficients contain only limited insight into the marginal effects of annuity attributes on demand. In this section, we conduct a series of counterfactual simulations to assess the magnitude of these effects. In all our simulations, we consider a specific focal annuity offering along with a no-choice option (i.e., the outside option) as the set of alternatives available to the customer. We then separately estimate the probability of buying the focal annuity for every individual in our sample, using the estimated posterior distributions of individual-level utility parameters. Adding the probabilities together yields an estimate of total demand within our subject sample. To account for estimation error, we compute the probability separately for each of the 40,000 post-burn-in posterior draws of $[\alpha_j, \beta_j, \gamma_j, \delta_j, \theta_j']$ and then average the probabilities over the draws. To account for the random component of utility given a particular draw, we average each probability over 100 draws of the random utility ϵ drawn iid from Normal (0,1). One way to think about our simulation strategy is to imagine each respondent generating 4 million pseudo-people, each with his own $[\alpha_j, \beta_j, \gamma_j, \delta_j, \theta_j', \epsilon_j']$ vector. Assume each of the four million pseudo-people picks his utility-
maximizing alternative, and the original respondent’s choice probability is the average choice across his alter egos. In the statistical literature, this kind of posterior predictive simulation is the standard approach (Rossi et al. 2005). We now turn to the specific simulations and the results.

Result 1: Fixed annual increases boost demand more than equal-payout percentage increases in the basic, but not the cumulative, treatment condition. The left side of Figure 2 displays the estimated demand from women (results for males are available from the authors) for an annuity from a AAA-rated company with $400 starting monthly income, no period-certain guarantee, and different types and magnitudes of annual increases. The top left plot shows the demand based on the basic treatment, and the bottom left plot shows it for the enriched information treatment. The dashed “control” lines in each plot indicate predicted demand for annuities that do not include annual increases, but deliver higher expected present value through higher starting incomes. Thus, we interpret demand above the control line as an over-valuation of the particular annual increase level relative to payoff-equivalent increases in the starting income, and demand below the control line as an under-valuation.

Looking first at the basic treatment in the upper left plot of Figure 2, additive increases generate consistently higher demand relative to payoff-equivalent percentage increases. While the $200 increase is valued about as much as the payoff-equivalent increases in the starting income, the 3% increase is clearly under-valued. Interestingly, raising either the additional yearly amount beyond $200 or the percentage increase above zero does not raise demand very much at all. For example, the implied elasticity of demand due to raising the yearly additional payment from $200 to $500 is only about 0.04. In other words, even if expected payout can be increased for free, the only large boost to demand available in the basic information treatment is the boost from no increase to $200 annual increase.

The demand curves look completely different in the enriched information treatment: under-valuation is no longer present, and a relative preference for additive increases over percentage increases no longer exists. In other words, annual increases are valued at almost
exactly their financial value in the enriched information condition, since lines for both types of increases match the control line. Thus, as suggested by the estimation results described above, providing consumers with a table with cumulative payouts appears to bring their attribute valuations for annual increases more in line with expected present value.

Result 2: Mid-length period-certain guarantees boost demand, whereas short-length ones decrease it. The right side of Figure 2 displays the estimated female demand for an annuity from a AAA-rated company with a $500 starting monthly income, no annual increases, and different numbers of years of period-certain guarantees. The top right plot shows the demand based on the basic treatment, and the bottom right plot shows it for the enriched information treatment. Consider the basic treatment (upper right plot) first: As in the case of annual increases, overall market demand is consistent with the average consumer’s preferences: the 20-year period-certain guarantee yields the highest demand and is dramatically overvalued relative to control (increasing demand by about a third compared to the payoff-equivalent increase in starting income). By contrast, no guarantee is preferred to a 5-year period-certain guarantee. This finding is surprising in the sense that even a 5-year period-certain guarantee provides some protection from full loss should the buyer unexpectedly die soon after purchasing the annuity, perhaps after being hit by the proverbial bus. Finally, the demand for 30-year period-certain guarantees is slightly below that for 10-year guarantees despite the much larger expected payout of the 30-year guarantee. These results suggest consumers will not respond positively to issuers’ offers of very short or very long period-certain guarantees.

The inverse-U shape of demand for period certain guarantees is also visible for annuities presented in the enriched information treatment. The persistence of the inverse-U shape across both treatments, as well as its persistence among individuals with high numeracy, suggests that it is not a result of mathematical miscalculation but instead reflects real preferences for certain levels of period certain guarantees over others. The primary difference in the shape between the treatments is that the preference for no guarantee over a 5-year guarantee is not evident in the
enriched information condition. To summarize, 10- and 20-year period certain guarantees make annuities more attractive beyond their effects on NPV, regardless of the information presentation condition, while 5-year and 30-year guarantees (both unusual in today’s marketplace and thus perhaps suspicious to consumers) are liked only at or even below their expected value.

Result 3: Among annuities with the same expected payout but different combinations of annual increases and period certain guarantees, the proportion of consumers choosing the annuity over self-management can vary by more than a factor of two. In other words, by structuring the annuity using attribute levels consumers prefer, the annuity issuer has an opportunity to more than double demand without increasing the expected present value (and hence his cost) of the product. Results 1 and 2 suggest that the annuities with small additive annual increases and mid-length period certain guarantees may generate higher consumer demand than payoff-equivalent annuities with higher starting incomes but no additional features. To assess the size of this “free” demand boost and find the best combinations of managerially relevant attributes under the issuer’s control, we estimate market demand for 15 annuities that all have the same expected payout, but differ in their annual increases (none, 3%, or, $200) and period certain guarantees (0, 5, 10, 20, or 30 years). For every combination of period certain and annual increase, we adjust the starting income of the annuity to result in an expected NPV of exactly $100,000 – the purchase price of the annuity, and so the maximum expected payout a fair issuer could offer without losing money. We exclude higher levels of annual increases from this exercise because the starting incomes that would keep the expected NPV at $100,000 are often below the minimum level considered in our study ($300). As in the analyses underlying results 1 and 2, we then compute the market demand every one of the 15 possible annuities would receive if it were the only offering in the market other than self-management.

Figure 3 plots the estimated demand as a function of period certain, by gender and
information treatment14. Under both information treatments and for both genders, the demand-maximizing (hereafter called “optimal”) annuities do not involve any annual increases, consistent with the average preferences in Tables 4a and 4b. Gender does not affect the optimal annuity beyond starting income, and providing enriched information lowers the optimal period certain length from 20 years to 10 years. Specifically, the optimal annuity under the basic information condition includes a 20-year period certain guarantee and a starting income of $491 for females and $510 for males (see table A3 in the Web Appendix for the starting incomes). The optimal annuity under the enriched information treatment includes a 10-year period certain guarantee and a starting income of $550 for females and $601 for males. Enriching the information thus reduces but does not eliminate the disadvantage of annual increases in the eyes of consumers.

The most striking aspect of Figure 3 is the large difference between the demand for the optimal annuities discussed above and the lowest-demand annuities. Even when we ignore the unpopular 30-year period-certain guarantee as unrealistic, the difference can be large: Under the basic information condition, the female demand for an expected-payoff-equivalent annuity with a starting income of $329, 5-year period certain and 3% annual increases is about half of the demand for the optimal annuity. Enriching the information reduces but does not eliminate this gap: the worst-performing annuity in the male market ($377 starting income, 3% annual increase and 20-year period certain) generates only 73 percent of the demand for the optimal annuity.

\textbf{DISCUSSION}

This paper presents a case for marketing research about decumulation products, proposes a model of consumer preferences for attributes of immediate life annuities, and estimates the model using stated preferences in a discrete choice experiment with a national panel of people.
aged 40-65 years. Our main methodological contribution is a model specification that allows
direct measurement of the direct influence of attributes on preferences beyond their impact via
the expected net present value of the annuity, a.k.a “beyond NPV”. We find that consumers’
value increases in the expected net present value of the payouts, but some annuity attributes also
influence consumer preferences directly, beyond their impact on financial value.

One attribute that influences preferences “beyond NPV” is inflation protection via annual
payment increases, and its influence depends on the way product information is presented. We
find that consumers who see only basic attribute information undervalue annual increases and
show stronger preference for fixed nominal annual increases relative to percentage increases,
holding the expected payout constant. However, consumers who also see a table with contingent
cumulative payouts undervalue annual increases much less and do not care whether the increases
are expressed in the form of percentages or dollars. These findings are consistent with prior
behavioral research on consumers’ biases in understanding compounding interest (Wagenaar and
Sagaria 1975, McKenzie and Liersch 2011). Consistent with the recommendations of Kunreuther
et al (2013), our findings suggest that policy makers trying to align consumer choices with
expected payout should encourage issuers to include cumulative payoff information in their
marketing materials, rather than simply listing attributes as seems to be current industry practice.

Another attribute with a strong influence beyond NPV is the period-certain guarantee.
We find that regardless of the information presentation, consumers (especially women)
overvalue “middle-length” (10-year and 20-year) period-certain guarantees, and (especially men)
undervalue very long guarantees (30-year). In the basic information condition, consumers also
undervalue very short (5-year) guarantees, an effect mostly driven by people with low retirement
savings. The demographics one would expect to drive preferences for period certain guarantees,
such as loss-aversion and life expectancy (Brown et al 2008), do not correlate strongly with the
pattern of over- and under-valuation we find, and additional research is clearly needed.
Finally, company financial strength rating is also important to consumers, with AAA-rated companies preferred to those with an AA rating. Interestingly, preference for financially safe issuers manifests solely via an increased weight on expected financial gain, and not as an upward shift in the utility function intercept. This result adds to prior evidence that consumers consider insurance company financial strength during purchase (Babble and Merrill 2006).

Demand for annuities is correlated with demographics and psychographics. Three correlations are consistent across both information treatments: First, respondents who have more money saved for retirement (over $75K) like annuities less. This finding is a bit of a paradox whereby the people who can afford annuitization are the same people who are not interested in it. Second, more numerate individuals exhibit a higher preference for expected financial gain (the slope of their utility in expected gain is about 18 percent steeper), consistent with the idea that annuities are complex financial products that require the skill to “do the math”. Surprisingly, more numerate individuals also undervalue annual increases more (especially in the basic information treatment), suggesting that their choices may not necessarily be better aligned with expected payout. Finally, respondents who consider annuities fair (measured by the scale of Kahneman, Knetsch, and Thaler 1986) like annuities more, consistent with behavioral explanations for the annuity puzzle (Hu & Scott 2007; Benartzi, Previtero & Thaler 2011).

Perceived fairness plays other roles in our model depending on the information treatment: in the enriched information treatment, individuals with higher levels of perceived fairness both like annuities more and value expected gain more. In the basic information treatment, individuals with higher levels of perceived fairness also show increased liking of annual increases beyond NPV, but not increased enough to de-bias their under-valuation of these increases. Efforts to better understand drivers of consumer perceptions of fairness may be a key strategy for policymakers and annuity providers to increase interest in these products.

Other individual differences we expected to affect preferences seem to matter less than hypothesized: individual measures of loss aversion affect annuity preference only marginally in
the enriched information condition (see Table 4b). Life expectancy does not correlate with the baseline liking of annuities, but does affect preference for annual increases in the enriched information treatment, with those expecting to live longer valuing such increases more highly.

One of the major limitations of our study is its inherent incompleteness of the individual difference measures. We made the strategic choice to focus on a limited number of measures that had been mostly unexplored in annuity research but had also been suggested as theoretically important, such as fairness and loss aversion. Future studies should continue testing both demographics and psychographics that may correlate with annuity preferences, such as Social Security eligibility, the existence of beneficiaries, wealth illusion, and intertemporal patience.

One of the main managerial contributions of our model is the design of products that maximize demand without increasing the expected payout. The highest-demand products are good “smart defaults” (Smith, Goldstein, and Johnson 2013), candidates for policy makers interested in increasing annuitization. We find that careful “packaging” of a given net present value into the optimal mix of the attributes can more than double demand for annuity products relative to the poorest performing attribute mixes. Regardless of the information treatment, the demand-maximizing annuities involve medium-length period-certain guarantees and no annual increases. The optimal length of the period certain guarantee depends on the information treatment: it is shorter when information is enriched. This dependence makes Table 2 an incomplete measure of the information enrichment’s potential to increase the uptake of annuities in the market. Whereas Table 2 shows that enriching the product information increases demand averaged over a fixed set of annuities (the set used in our experimental design), we need to compare the demand between the annuities managers would select under each treatment (20-year period certain under basic and 10-year period certain under enriched). For each gender, this comparison reveals that enriching information increases achievable demand by about 10 percent. Further investigation of such information presentation options may offer a deeper understanding of how choice architecture can help address the annuity puzzle.
Although our study provides several insights about how consumers respond to different annuity attributes, both individually and in aggregate, several open questions remain. The first major open question concerns what else we can understand about the decision process, and especially how consumers actively make tradeoffs between annuity attributes. The current study provides a step forward by measuring individual-level preferences for annuity attributes through their effects on both expected payout and value beyond financial measures and then seeing how individual-level characteristics interact with those attribute preferences. To get an even better understanding of the actual decision process, researchers can turn to methods such as eye tracking to directly observe which attributes respondents attend to.

A second open question is how individuals value other annuity attributes that exist in the marketplace but are unaddressed in this particular study. One attribute of importance is the start date of the annuity. All of the choice tasks presented in this study involve immediate life annuities which begin payment at age 65. However, the marketplace also offers annuities with delayed start dates (e.g., deferred annuities, ALDAs, or longevity insurance), and recent government reports encourage greater use of such deferred annuities. Our methodology could be used to assess the value of this recommendation by including a deferred start date as an attribute.

A final question regards the options available to marketers and public-policy experts for increasing consumers’ preference for annuities. Our findings provide some insight into this question through our testing of a cumulative payout information display. However, our results from both treatment conditions assume particular presentations of the annuity attributes; given the extensive findings in the behavioral literature on how information presentation affects preferences, we expect that different ways of presenting the information will result in further differences in preferences. For example, our participants’ responses to percentage versus fixed annual increases were significantly affected when payments were shown in cumulative rather than per-period formats, but the pattern of sensitivity to period-certain guarantees was generally unchanged. Other information presentation formats that might highlight the probability of death
and/or certainty of payouts at certain ages could potentially reverse this finding. Testing of these types of presentational styles for annuity attributes may provide additional useful insights for interventions that can address the annuity puzzle.

References

US Bureau of Economic Analysis (2011)

Table 1: Attribute levels used in the conjoint analysis

<table>
<thead>
<tr>
<th>Level</th>
<th>Starting monthly income</th>
<th>Company financial strength rating</th>
<th>Annual increases in payments</th>
<th>Period-certain guarantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monthly payments start at $300 ($3,600/year)</td>
<td>Company rated AA (very strong)</td>
<td>Fixed payments (no annual increase)</td>
<td>No period-certain option</td>
</tr>
<tr>
<td>2</td>
<td>Monthly payments start at $400 ($4,800/year)</td>
<td>Company rated AAA (extremely strong)</td>
<td>3% annual increase in payments</td>
<td>5-year period-certain</td>
</tr>
<tr>
<td>3</td>
<td>Monthly payments start at $500 ($6,000/year)</td>
<td></td>
<td>5% annual increase in payments</td>
<td>10-year period-certain</td>
</tr>
<tr>
<td>4</td>
<td>Monthly payments start at $600 ($7,200/year)</td>
<td></td>
<td>7% annual increase in payments</td>
<td>20-year period-certain</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>$200 annual increase in payments</td>
<td>30-year period-certain</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>$400 annual increase in payments</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>$500 annual increase in payments</td>
<td></td>
</tr>
</tbody>
</table>
Table 2a: Model-free evidence that attributes have “beyond NPV” effect on preferences

<table>
<thead>
<tr>
<th>Information Treatment</th>
<th>Analysis of 7% annual increase. Highest-NPV alternative selected when it does...</th>
<th>Analysis of 20-yr. period certain. Lowest NPV alternative selected when it does...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>involve 7% increase (5 tasks)</td>
<td>not involve 7% increase (13 tasks)</td>
</tr>
<tr>
<td>basic (334 subjects)</td>
<td>17.3%</td>
<td>20.9%</td>
</tr>
<tr>
<td>enriched (323 subjects)</td>
<td>20.0%</td>
<td>29.2%</td>
</tr>
</tbody>
</table>

Note: Only tasks in which the identity of the highest-NPV or lowest-NPV alternative does not depend on gender. **Bold** indicates an effect with \(p < 0.05 \). Number of observations is set to the number of subjects.

Table 2b: Model-free analysis of the effect of information enrichment on annuitization

<table>
<thead>
<tr>
<th>Information Treatment</th>
<th>Choices when an inside alternative was selected</th>
<th>Percent of subjects...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest NPV selected</td>
<td>Lowest NPV selected</td>
</tr>
<tr>
<td>basic (334 subjects)</td>
<td>33.3%</td>
<td>32.0%</td>
</tr>
<tr>
<td>enriched (323 subjects)</td>
<td>39.9%</td>
<td>26.6%</td>
</tr>
<tr>
<td>effect of enriched information</td>
<td>6.6%</td>
<td>-5.4%</td>
</tr>
<tr>
<td>SE of effect (#obs=#subjects)</td>
<td>3.8%</td>
<td>3.5%</td>
</tr>
<tr>
<td>SE of effect (#obs=#choices)</td>
<td>1.0%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

Note: **Bold** indicates an effect with \(p < 0.05 \) regardless of how the standard error is calculated. **Bold italics** indicates an effect with \(p < 0.05 \) when the standard error is calculated using the number of choice tasks as the number of observations.
Table 3: Respondent demographic and psychographic characteristics

<table>
<thead>
<tr>
<th>Demographic or psychographic characteristic</th>
<th>Baseline treatment (334 respondents)</th>
<th>Enriched info treatment (323 respondents)</th>
<th>Same for both treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>median</td>
<td>std. dev</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52.87</td>
<td>53</td>
<td>6.83</td>
</tr>
<tr>
<td>Male</td>
<td>0.41</td>
<td>0</td>
<td>0.49</td>
</tr>
<tr>
<td>Retirement savings 75to150K</td>
<td>0.13</td>
<td>0</td>
<td>0.34</td>
</tr>
<tr>
<td>Retirement savings over 150K</td>
<td>0.18</td>
<td>0</td>
<td>0.38</td>
</tr>
<tr>
<td>Perceived fairness of annuities</td>
<td>0.59</td>
<td>0.67</td>
<td>0.22</td>
</tr>
<tr>
<td>Loss aversion</td>
<td>0.66</td>
<td>0.7</td>
<td>0.29</td>
</tr>
<tr>
<td>Numeracy</td>
<td>0.50</td>
<td>0.5</td>
<td>0.16</td>
</tr>
<tr>
<td>Life expectancy (age at death)</td>
<td>85.77</td>
<td>87</td>
<td>8.03</td>
</tr>
</tbody>
</table>

Note: Perceived fairness is measured using the four-point fairness scale of Kahneman, Knetsch, and Thaler (1986) and then rescaled between 0 and 1. Loss aversion is measured using a set of 9 choices between mixed (gain and loss) gambles and then re-scaled between 0 and 1. Numeracy was measured through a set of eight questions: five questions test numeracy through questions of probability and likelihood following Peters et al. (2006), and the additional three questions are taken from the CRT (Frederick 2005). The total number of correct answers is rescaled between 0 and 1 to arrive at our numeracy measure. Note that 38 percent of the respondents did not complete the numeracy questions; we substituted the population median and the table reflects the statistics after this substitution. Life expectancy is based on the individual-level subjective assessment of the probability of surviving until 65, 75, 85, and 95. The subjective probabilities are used to estimate a Weibull survival model via maximum likelihood (see Payne et al 2013), and the individual life expectancy is then derived as a plug-in estimate of the expected value of the Weibull random variable at the maximum likelihood parameter estimates.
Table 4a: Population-level regression: Marginal effects of the demographics and psychographics on the utility parameters, basic information treatment

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Expected NPV of payout - price</th>
<th>AAA rated issuer (vs. AA)</th>
<th>(Exp. NPV of payout - price) X AAA rated issuer</th>
<th>Annual increase 3% (vs. 0)</th>
<th>Annual increase 5% (vs. 0)</th>
<th>Annual increase 7% (vs. 0)</th>
<th>Annual increase $200 (vs. 0)</th>
<th>Annual increase $400 (vs. 0)</th>
<th>Annual increase $500 (vs. 0)</th>
<th>Period certain 5 years (vs. 0)</th>
<th>Period certain 10 years (vs. 0)</th>
<th>Period certain 20 years (vs. 0)</th>
<th>Period certain 30 years (vs. 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population mean</td>
<td>-1.03</td>
<td>1.31</td>
<td>-0.08</td>
<td>0.76</td>
<td>-0.54</td>
<td>-0.74</td>
<td>-1.32</td>
<td>-0.17</td>
<td>-0.58</td>
<td>-0.63</td>
<td>0.18</td>
<td>0.55</td>
<td>-0.81</td>
<td></td>
</tr>
<tr>
<td>Unexplained population std. dev.</td>
<td>2.59 0.93 0.82 0.61 0.70 0.94 1.46 0.68 0.87 1.19 0.97 1.35 1.73 2.35</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-1.21</td>
<td>1.11</td>
<td>-0.06</td>
<td>0.58</td>
<td>-0.53</td>
<td>-0.84</td>
<td>-1.32</td>
<td>-0.10</td>
<td>-0.53</td>
<td>-0.60</td>
<td>0.20</td>
<td>0.81</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>Age (in 100 years, demeaned)</td>
<td>-2.83</td>
<td>1.22</td>
<td>-1.17</td>
<td>0.51</td>
<td>-0.24</td>
<td>0.07</td>
<td>0.00</td>
<td>-0.12</td>
<td>-0.08</td>
<td>-0.46</td>
<td>-0.15</td>
<td>1.09</td>
<td>1.88</td>
<td>1.34</td>
</tr>
<tr>
<td>Life expectancy (in 100 years, demeaned)</td>
<td>0.13</td>
<td>-0.58</td>
<td>-0.01</td>
<td>-0.18</td>
<td>0.17</td>
<td>0.98</td>
<td>1.00</td>
<td>0.45</td>
<td>0.86</td>
<td>1.38</td>
<td>-1.19</td>
<td>-1.44</td>
<td>-0.41</td>
<td>1.06</td>
</tr>
<tr>
<td>Male</td>
<td>0.50</td>
<td>0.24</td>
<td>-0.12</td>
<td>0.24</td>
<td>0.09</td>
<td>0.34</td>
<td>0.18</td>
<td>0.00</td>
<td>0.15</td>
<td>0.06</td>
<td>-0.14</td>
<td>-0.32</td>
<td>-0.72</td>
<td>-0.92</td>
</tr>
<tr>
<td>Retirement savings 75to150K</td>
<td>-0.14</td>
<td>0.32</td>
<td>-0.14</td>
<td>0.23</td>
<td>-0.35</td>
<td>-0.29</td>
<td>-0.39</td>
<td>-0.25</td>
<td>-0.48</td>
<td>-0.48</td>
<td>0.57</td>
<td>0.39</td>
<td>0.15</td>
<td>-0.02</td>
</tr>
<tr>
<td>Retirement savings over 150K</td>
<td>-0.04</td>
<td>0.30</td>
<td>0.26</td>
<td>0.25</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.12</td>
<td>-0.22</td>
<td>-0.25</td>
<td>0.02</td>
<td>0.61</td>
<td>0.36</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Perceived fairness of annuities (z-score)</td>
<td>0.78</td>
<td>-0.09</td>
<td>0.14</td>
<td>-0.25</td>
<td>0.26</td>
<td>0.32</td>
<td>0.40</td>
<td>0.18</td>
<td>0.35</td>
<td>0.33</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>Loss aversion (z-score)</td>
<td>-0.23</td>
<td>-0.11</td>
<td>-0.03</td>
<td>0.02</td>
<td>-0.05</td>
<td>-0.06</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.11</td>
<td>-0.07</td>
<td>-0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Numeracy (z-score)</td>
<td>0.18</td>
<td>0.23</td>
<td>-0.10</td>
<td>0.15</td>
<td>-0.21</td>
<td>-0.21</td>
<td>-0.32</td>
<td>-0.31</td>
<td>-0.24</td>
<td>-0.36</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

Note: Posterior means of Δ (the marginal effects of demographic and psychographic variables on the utility parameters). **Bold** indicates that 97.5% or more of the posterior mass has the same sign as the posterior mean—a Bayesian analogue of significance at the 5% level. **Bold & Italic** indicates that 95% or more of the posterior mass has the same sign as the posterior mean—a Bayesian analogue of significance at the 10% level. See Table 3 for summary statistics of the explanatory variables in this regression, but note that several were further statistically transformed to improve the interpretability of results (age and life expectancy were de-meaned, and personal traits measured by scales were expressed as z-scores).
Table 4b: Population-level regression: Marginal effects of the demographics and psychographics on the utility parameters, enriched information treatment

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Expected NPV of payout - price</th>
<th>AAA rated issuer (vs. AA)</th>
<th>(Exp. NPV of payout - price) X AAA rated issuer</th>
<th>Annual increase 3% (vs. 0)</th>
<th>Annual increase 5% (vs. 0)</th>
<th>Annual increase 7% (vs. 0)</th>
<th>Annual increase $200 (vs. 0)</th>
<th>Annual increase $400 (vs. 0)</th>
<th>Annual increase $500 (vs. 0)</th>
<th>Period certain 5 years (vs. 0)</th>
<th>Period certain 10 years (vs. 0)</th>
<th>Period certain 20 years (vs. 0)</th>
<th>Period certain 30 years (vs. 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population mean</td>
<td>-0.38</td>
<td>1.87</td>
<td>-0.05</td>
<td>0.90</td>
<td>-0.27</td>
<td>-0.27</td>
<td>-0.95</td>
<td>-0.22</td>
<td>-0.38</td>
<td>-0.44</td>
<td>-0.04</td>
<td>0.20</td>
<td>-0.25</td>
<td>-1.94</td>
</tr>
<tr>
<td>Unexplained population std. dev. $\sqrt{\text{diag} (\Sigma)}$</td>
<td>3.17</td>
<td>1.50</td>
<td>0.85</td>
<td>0.71</td>
<td>0.63</td>
<td>0.88</td>
<td>1.73</td>
<td>0.58</td>
<td>0.76</td>
<td>0.98</td>
<td>0.65</td>
<td>0.99</td>
<td>1.70</td>
<td>2.81</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.10</td>
<td>1.56</td>
<td>-0.01</td>
<td>0.69</td>
<td>-0.36</td>
<td>-0.45</td>
<td>-1.15</td>
<td>-0.21</td>
<td>-0.51</td>
<td>-0.55</td>
<td>-0.08</td>
<td>0.23</td>
<td>-0.13</td>
<td>-1.59</td>
</tr>
<tr>
<td>Age (in 100 years, demeaned)</td>
<td>2.33</td>
<td>1.85</td>
<td>-0.89</td>
<td>0.93</td>
<td>-0.92</td>
<td>-1.18</td>
<td>-2.11</td>
<td>-0.27</td>
<td>-0.50</td>
<td>-1.21</td>
<td>-1.17</td>
<td>-1.43</td>
<td>-2.34</td>
<td>-3.72</td>
</tr>
<tr>
<td>Life expectancy (in 100 years, demeaned)</td>
<td>-0.65</td>
<td>1.50</td>
<td>-0.35</td>
<td>0.45</td>
<td>1.58</td>
<td>5.37</td>
<td>1.86</td>
<td>3.00</td>
<td>4.04</td>
<td>-1.07</td>
<td>0.35</td>
<td>1.25</td>
<td>1.78</td>
<td>-1.59</td>
</tr>
<tr>
<td>Male</td>
<td>0.18</td>
<td>0.17</td>
<td>-0.27</td>
<td>0.31</td>
<td>0.02</td>
<td>0.14</td>
<td>-0.24</td>
<td>0.17</td>
<td>0.12</td>
<td>-0.02</td>
<td>-0.13</td>
<td>-0.38</td>
<td>-0.59</td>
<td>-0.99</td>
</tr>
<tr>
<td>Retirement savings 75to150K</td>
<td>-1.17</td>
<td>0.30</td>
<td>0.36</td>
<td>0.09</td>
<td>0.24</td>
<td>0.03</td>
<td>0.20</td>
<td>0.19</td>
<td>0.19</td>
<td>0.17</td>
<td>0.22</td>
<td>0.18</td>
<td>0.56</td>
<td>0.60</td>
</tr>
<tr>
<td>Retirement savings over 150K</td>
<td>-0.73</td>
<td>0.91</td>
<td>0.03</td>
<td>0.30</td>
<td>0.20</td>
<td>0.56</td>
<td>0.21</td>
<td>0.27</td>
<td>0.15</td>
<td>0.17</td>
<td>0.04</td>
<td>-0.04</td>
<td>-0.25</td>
<td>-0.99</td>
</tr>
<tr>
<td>Perceived fairness of annuities (z-score)</td>
<td>1.22</td>
<td>0.32</td>
<td>-0.04</td>
<td>0.15</td>
<td>-0.07</td>
<td>-0.02</td>
<td>-0.22</td>
<td>-0.11</td>
<td>-0.12</td>
<td>0.04</td>
<td>0.00</td>
<td>-0.11</td>
<td>-0.27</td>
<td>-0.99</td>
</tr>
<tr>
<td>Loss aversion (z-score)</td>
<td>-0.24</td>
<td>-0.21</td>
<td>0.10</td>
<td>-0.07</td>
<td>0.17</td>
<td>0.16</td>
<td>0.20</td>
<td>0.08</td>
<td>0.12</td>
<td>0.19</td>
<td>0.09</td>
<td>0.09</td>
<td>0.16</td>
<td>0.30</td>
</tr>
<tr>
<td>Numeracy (z-score)</td>
<td>-0.36</td>
<td>0.35</td>
<td>0.12</td>
<td>0.13</td>
<td>-0.18</td>
<td>-0.06</td>
<td>-0.23</td>
<td>0.06</td>
<td>-0.14</td>
<td>-0.20</td>
<td>0.12</td>
<td>0.10</td>
<td>-0.03</td>
<td>-0.30</td>
</tr>
</tbody>
</table>

Note: Posterior means of Δ (the marginal effects of demographic and psychographic variables on the utility parameters). **Bold** indicates that 97.5% or more of the posterior mass has the same sign as the posterior mean—a Bayesian analogue of significance at the 5% level. **Bold & Italic** indicates that 95% or more of the posterior mass has the same sign as the posterior mean—a Bayesian analogue of significance at the 10% level. See Table 3 for summary statistics of the explanatory variables in this regression, but note that several were further statistically transformed to improve the interpretability of results (age and life expectancy were de-meaned, and personal traits measured by scales were expressed as z-scores).
Table 4c: Population-level regression under an starting income model specification (starting income replaces expected gain), basic information treatment

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Starting monthly income (SI100)</th>
<th>AAA rated issuer (vs. AA)</th>
<th>Starting monthly income X AAA rated issuer</th>
<th>Annual increase 3% (vs. 0)</th>
<th>Annual increase 5% (vs. 0)</th>
<th>Annual increase 7% (vs. 0)</th>
<th>Annual increase $200 (vs. 0)</th>
<th>Annual increase $400 (vs. 0)</th>
<th>Annual increase $500 (vs. 0)</th>
<th>Period certain 5 years (vs 0)</th>
<th>Period certain 10 years (vs 0)</th>
<th>Period certain 20 years (vs 0)</th>
<th>Period certain 30 years (vs 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population mean</td>
<td>-4.32</td>
<td>0.48</td>
<td>-0.04</td>
<td>0.06</td>
<td>0.22</td>
<td>0.52</td>
<td>0.81</td>
<td>0.45</td>
<td>0.59</td>
<td>0.98</td>
<td>-0.58</td>
<td>0.33</td>
<td>1.23</td>
<td>0.67</td>
</tr>
<tr>
<td>Unexplained population std. dev. $\sqrt{\text{diag}(\Sigma)}$</td>
<td>3.64</td>
<td>0.45</td>
<td>0.85</td>
<td>0.22</td>
<td>0.35</td>
<td>0.42</td>
<td>0.52</td>
<td>0.39</td>
<td>0.46</td>
<td>0.55</td>
<td>1.05</td>
<td>1.44</td>
<td>1.68</td>
<td>1.97</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.08</td>
<td>0.43</td>
<td>-0.05</td>
<td>0.07</td>
<td>0.14</td>
<td>0.31</td>
<td>0.62</td>
<td>0.47</td>
<td>0.52</td>
<td>0.84</td>
<td>-0.72</td>
<td>0.33</td>
<td>1.34</td>
<td>0.73</td>
</tr>
<tr>
<td>Age (in 100 years, demeaned)</td>
<td>-5.43</td>
<td>0.42</td>
<td>0.02</td>
<td>-0.24</td>
<td>0.12</td>
<td>0.68</td>
<td>1.32</td>
<td>0.11</td>
<td>0.49</td>
<td>0.48</td>
<td>-0.30</td>
<td>1.11</td>
<td>2.36</td>
<td>2.49</td>
</tr>
<tr>
<td>Life expectancy (in 100 years, demeaned)</td>
<td>1.85</td>
<td>-0.27</td>
<td>0.45</td>
<td>-0.15</td>
<td>-0.17</td>
<td>0.38</td>
<td>0.05</td>
<td>0.20</td>
<td>0.33</td>
<td>0.70</td>
<td>-1.16</td>
<td>-1.44</td>
<td>-0.65</td>
<td>0.29</td>
</tr>
<tr>
<td>Male</td>
<td>0.17</td>
<td>0.02</td>
<td>-0.07</td>
<td>-0.02</td>
<td>0.17</td>
<td>0.39</td>
<td>0.25</td>
<td>0.03</td>
<td>0.22</td>
<td>0.15</td>
<td>-0.11</td>
<td>-0.30</td>
<td>-0.50</td>
<td>-0.45</td>
</tr>
<tr>
<td>Retirement savings 75to150K</td>
<td>-0.90</td>
<td>0.11</td>
<td>-0.38</td>
<td>0.08</td>
<td>-0.16</td>
<td>0.02</td>
<td>0.14</td>
<td>-0.13</td>
<td>-0.25</td>
<td>-0.12</td>
<td>0.57</td>
<td>0.40</td>
<td>0.31</td>
<td>0.28</td>
</tr>
<tr>
<td>Retirement savings over 150K</td>
<td>-1.08</td>
<td>0.17</td>
<td>0.51</td>
<td>-0.03</td>
<td>0.18</td>
<td>0.29</td>
<td>0.36</td>
<td>-0.06</td>
<td>0.05</td>
<td>0.48</td>
<td>0.63</td>
<td>0.43</td>
<td>0.31</td>
<td>0.48</td>
</tr>
<tr>
<td>Perceived fairness of annuities (z-score)</td>
<td>1.31</td>
<td>-0.06</td>
<td>0.07</td>
<td>-0.01</td>
<td>0.14</td>
<td>0.16</td>
<td>0.07</td>
<td>0.11</td>
<td>0.21</td>
<td>0.14</td>
<td>-0.01</td>
<td>-0.04</td>
<td>-0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>Loss aversion (z-score)</td>
<td>-0.11</td>
<td>-0.03</td>
<td>-0.11</td>
<td>0.02</td>
<td>-0.09</td>
<td>-0.13</td>
<td>-0.08</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-0.12</td>
<td>-0.07</td>
<td>-0.02</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>Numeracy (z-score)</td>
<td>-0.97</td>
<td>0.18</td>
<td>0.29</td>
<td>-0.06</td>
<td>-0.02</td>
<td>0.06</td>
<td>0.13</td>
<td>-0.15</td>
<td>0.03</td>
<td>0.05</td>
<td>0.08</td>
<td>0.06</td>
<td>0.17</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Note: Posterior means of Δ (the marginal effects of demographic and psychographic variables on the utility parameters). **Bold** indicates that 97.5% or more of the posterior mass has the same sign as the posterior mean—a Bayesian analogue of significance at the 5% level. **Bold&Italic** indicates that 95% or more of the posterior mass has the same sign as the posterior mean—a Bayesian analogue of significance at the 10% level. See Table 3 for summary statistics of the explanatory variables in this regression, but note that several were further statistically transformed to improve the interpretability of results (age and life expectancy were de-meaned, and personal traits measured by scales were expressed as z-scores).
Table 5: Effect of enriched information: average beyond-NPV willingness to pay for annuity features

<table>
<thead>
<tr>
<th>Information treatment</th>
<th>Proposed model specification</th>
<th>Starting inc. model specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic</td>
<td>Enriched</td>
</tr>
<tr>
<td></td>
<td>Average beyond-NPV willingness to pay (WTPbNPV)</td>
<td>Posterior std. dev. of WTPbNPV</td>
</tr>
<tr>
<td>Expected gain of $100 ($V_{n,k,p=100}$)</td>
<td>$100.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>Starting monthly income of $100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA rated issuer (vs. AA)</td>
<td>-$4.0</td>
<td>$3.6</td>
</tr>
<tr>
<td>Annual increase 3% (vs. 0)</td>
<td>-$27.1</td>
<td>$4.5</td>
</tr>
<tr>
<td>Annual increase 5% (vs. 0)</td>
<td>-$36.4</td>
<td>$4.1</td>
</tr>
<tr>
<td>Annual increase 7% (vs. 0)</td>
<td>-$64.5</td>
<td>$4.7</td>
</tr>
<tr>
<td>Annual increase $200 (vs. 0)</td>
<td>-$8.8</td>
<td>$4.4</td>
</tr>
<tr>
<td>Annual increase $400 (vs. 0)</td>
<td>-$28.8</td>
<td>$4.1</td>
</tr>
<tr>
<td>Annual increase $500 (vs. 0)</td>
<td>-$31.8</td>
<td>$4.6</td>
</tr>
<tr>
<td>Period certain 5 years (vs. 0)</td>
<td>-$25.8</td>
<td>$6.1</td>
</tr>
<tr>
<td>Period certain 10 years (vs. 0)</td>
<td>$8.6</td>
<td>$5.5</td>
</tr>
<tr>
<td>Period certain 20 years (vs. 0)</td>
<td>$26.6</td>
<td>$5.9</td>
</tr>
<tr>
<td>Period certain 30 years (vs. 0)</td>
<td>-$39.8</td>
<td>$6.6</td>
</tr>
</tbody>
</table>

Note: The computations assume a AAA annuity. Average willingness-to-pay beyond NPV (WTPbNPV) parameters are derived from the individual parameters as follows: For each iteration of the Gibbs sampler, we divide the population average of all utility parameters by the population average of the coefficient on the expected payout ($\beta+\delta$ in equation 2 since we are considering a AAA annuity). The resulting draws of the population-average WTPbNPV are then used in computing both the posterior mean and the posterior standard deviation over all post-burn-in draws. In the starting income model specification, the same computations result in the more standard total willingness-to-pay (WTP). Bold indicates that 97.5% or more of the posterior mass has the same sign as the posterior mean—a Bayesian analogue of significance at the 5% level.
Figure 2: Demand for annuities with different lengths of period-certain guarantee and different types of annual increases

Starting income $400/month, no period certain

Basic information treatment

Expected payout of annuity ($100K)

Starting income $500/month, no annual increase

Basic information treatment

Expected payout of annuity ($100K)

Legend (what varies):
- additive increase
- percentage increase
- starting income
- period certain
- starting income

Note to Figure: Predicted female demand for a AAA annuity. The dashed line without markers represents annuities with different starting incomes, no annual increases, and no period-certain guarantees.
Figure 1a: Sample conjoint choice task

If you were 65 and considering putting $100,000 of your retirement savings into an annuity, which of the following would you choose?

- **Option A**: Monthly payments start at $400 ($4,800/year), 7% annual increase in payments, 30 years period certain, Company rated AA (very strong)
- **Option B**: Monthly payments start at $600 ($7,200/year), 5% annual increase in payments, 10 years period certain, Company rated AAA (extremely strong)
- **Option C**: Monthly payments start at $500 ($6,000/year), $400 annual increase in payments, 20 years period certain, Company rated AAA (extremely strong)
- **None**: if these were my only options, I would defer my choice and continue to self-manage my retirement assets.

Figure 1b: Sample conjoint choice task with cumulative payouts

In the enriched information treatment, the following table was shown directly under the task:

<table>
<thead>
<tr>
<th>Age</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A</td>
<td>$27,600</td>
<td>$66,300</td>
<td>$120,600</td>
<td>$196,800</td>
<td>$303,600</td>
<td>$453,400</td>
</tr>
<tr>
<td>Option B</td>
<td>$39,800</td>
<td>$90,600</td>
<td>$155,400</td>
<td>$238,100</td>
<td>$343,600</td>
<td>$478,400</td>
</tr>
<tr>
<td>Option C</td>
<td>$34,000</td>
<td>$78,000</td>
<td>$132,000</td>
<td>$196,000</td>
<td>$270,000</td>
<td>$354,000</td>
</tr>
</tbody>
</table>

Figure 1c: Choice shares of the three alternatives for the sample task in Figure 1a

<table>
<thead>
<tr>
<th>Expected present value (V)</th>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>$264,900</td>
<td>$174,100</td>
<td>165,700</td>
<td>?</td>
</tr>
<tr>
<td>V without period certain guarantee</td>
<td>$142,400</td>
<td>$167,800</td>
<td>$134,400</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed choice shares</th>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic treatment</td>
<td>15%</td>
<td>28%</td>
<td>20%</td>
<td>36%</td>
</tr>
<tr>
<td>Enriched treatment</td>
<td>14%</td>
<td>50%</td>
<td>12%</td>
<td>24%</td>
</tr>
</tbody>
</table>
Figure 3: Demand for annuities with exactly $100,000 expected payout

Note to Figure: Each line depicts market demand for a AAA annuity that pays out $100,000 in expected net present value, and has a particular type of annual increase, as a function of the period certain guarantee. Starting income is adjusted to achieve the constant payout. Markers indicate combinations that do not require extrapolation beyond the range of starting incomes in the study ($300 to $600 per month). See Table A3 for details.