Title
On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550°C

Permalink
https://escholarship.org/uc/item/9jj8t067

Author
Ritchie, I Altenberger, RK Nalla, YSano LWagner, RO

Publication Date
2013-03-04

Peer reviewed
On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550°C

I. Altenberger¹, R. K. Nalla², Y. Sano³, L. Wagner⁴, R. O. Ritchie⁵

¹ Wieland-Werke AG, Ulm, Germany
² LensVector Inc., Mountain View, USA
³ Toshiba Corporation, Yokohama, Japan
⁴ Clausthal University of Technology, Clausthal, Germany
⁵ Materials Sciences Division, Lawrence Berkeley Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA, USA

ABSTRACT

The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 10^2 to 10^6 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25° and 550°C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550°C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocrystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450°-550°C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

Keywords: Fatigue; Titanium alloys; Surface treatments; Deep-rolling; Laser shock peening

1. Introduction

Compressor fan blades and disks in aircraft jet propulsion engines are commonly made from titanium alloys, e.g., Ti-6Al-4V, due to their favorable combination of low density with strength, fatigue, oxidation and wear resistance. In service, these alloys experience severe mechanical and thermal loading conditions, in particular high- and low-cycle fatigue cycles resulting, respectively, from high frequency vibrations in flight and start and stop cycles of the engine during take-off and landings [1]. To assess the fatigue properties for these applications, constant amplitude fatigue testing is routinely carried out at ambient to elevated temperatures under stress, total strain or plastic strain control in order to discern the cyclic softening or hardening behavior as a function of fatigue cycles and the number of cycles to failure. To affect this softening/hardening behavior and enhance fatigue lives, mechanical surface treatments are often utilized, both to impart compressive residual stresses and to develop sufficiently deep work-hardened regions in the surface layers. With such procedures, which have traditionally involved shot peening, significant increases in the fatigue lives of many metallic materials can be realized [2-6].

However, there are other surface treatments in addition to shot peening [7] that have been used to increase resistance to early fatigue crack initiation and growth in metallic structures, notably deep-rolling [8], roller-burnishing [9] or low-plasticity burnishing¹ [10], and laser-shock (or laser) peening

* formerly at the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA

¹ The terminology "deep rolling" refers to a surface rolling treatment using rolls or ball-point tools for the purpose of inducing deep plastic deformations and compressive residual stresses in near-surface regions, in contrast to "roller
Shot peening, with or without subsequent polishing, has been utilized now for decades to induce favorable near-surface microstructures and compressive residual stress states [15,16], although several recent studies have revealed the superiority of the so-called alternative surface treatments [8]. Specifically, laser-shock peening\(^2\) has proven to be a particularly effective surface treatment for both \(\alpha\)-\(\beta\) and near-\(\beta\)-titanium alloys, especially for fan blade applications [17,18].

There is considerable information in the literature on the effects of shot peening on the fatigue performance of Ti-6Al-4V alloys at room temperature, e.g. refs. [7,19]. The procedure is known to improve the fatigue strength of Ti-6Al-4V in both the high-cycle fatigue (HCF) and low cycle fatigue (LCF) regimes [20]. However, the response to surface treatments depends significantly on the microstructure and/or heat treatment [7,15]. For example, compared to electropolished material, air cooled duplex microstructures (comprising primary \(\alpha\)-grains embedded in a lamellar (\(\alpha\)+\(\beta\)) matrix) appear to exhibit little improvement in the HCF-strength after shot-peening, whereas water quenched lamellar duplex microstructures show a pronounced improvement, a finding that has been related to the differing mean stress sensitivity of the two structures as sub-surface cracking due to tensile residual stresses was assumed to be the dominant crack initiation mechanism [16]. Presently, shot peening is still the most used mechanical surface treatment in the turbine engine industry, although the associated surface roughening is known to be problematic since it reduces the gas flow efficiency and can severely reduce the crack initiation phase. To counter this roughness effect, either an additional polishing step or the use of alternative mechanical surface treatments such as laser-shock peening or deep rolling have been tried; indeed these alternative approaches to simple shot peening have become increasingly popular over the past decade [8,11,18].

Most studies on the fatigue resistance of deep-rolled and laser-shock peened Ti-6Al-4V alloys have focused on the LCF regime [18] and considered the issues of the near-surface residual stresses [11,21] and surface microstructures induced by the mechanical surface treatment [22]. One question is the effectiveness of these surface treatments for applications that required higher temperature service. Indeed, by varying temperature (only) up to 550-600°C, it has been shown that the residual stresses are essentially annealed out in Ti-6Al-4V, whereas the highly work-hardened nanoscale surface microstructures tend to be much more thermally stable and still effective [22]. However, few studies have considered the effects of both cyclic plasticity and temperature on the stability and effect of the residual stresses and work-hardened surface layers during elevated temperature fatigue.

Accordingly, it is the aim of this work to show systematically the limits of cyclic deformation and temperatures where mechanical surface treatments can remain an effective method of fatigue strength enhancement in Ti-6Al-4V and further to discern the salient microstructural mechanisms underlying such behavior. The ultimate objective is to develop a tailored microstructure-based approach of surface engineering for enhancing structural integrity in these alloys.

2. Experimental Procedures

The Ti-6Al-4V alloy under study was received as 2-m long, 14-mm diameter cylindrical bars from Hempel Company, Germany, with a composition (in wt.%) of 6.22% Al, 4.01% V, 0.2% Fe, 0.2% O, 0.02% C, 0.01% N, 0.001% H, balance Ti. The material was solution heat treated at 970°C for 30 min and subsequently air cooled. After machining, 7-mm diameter cylindrical specimens, with a 15-mm gauge length, were stress relieved at 700°C in an argon atmosphere. The resulting bimodal microstructure consisted of interconnected equiaxed primary \(\alpha\)-grains and \(\alpha\)+\(\beta\) colonies (transformed \(\beta\)); the volume content of the primary \(\alpha\)-phase was 37%, as measured by image analysis. An optical micrograph of the bimodal microstructure (etched in Kroll solution) is shown in Fig. 1. Room

burnishing” which is usually applied with lower forces or pressures and mostly aims to obtain a certain surface quality, especially in terms of minimized roughness (in addition to inducing residual stress). "Low plasticity burnishing” generally refers to a mechanical surface treatment (sometimes using low or moderate forces/pressures as compared to "deep rolling") with rolls or ball-point tools [8,9,10].

\(^2\) Laser-shock peening is a mechanical surface treatment using pulsed lasers. The laser-illuminated component which is strengthened by laser peening is covered by water. After the shock-wave propagation, the surface is elastically constrained to form a compressive residual stress. The process can be carried out with or without sacrificial coating (but with different pulse energies).
temperature tensile tests gave yield and ultimate tensile strengths of 968 and 1030 MPa, respectively, with an elongation of 29%, similar to the properties of the Ti-6Al-4V alloy studied in our previous work on surface treatments [18,22-26]. The average grain size was ~15 μm after heat treatment.

Surface roughness was measured using a mechanical sensor ("Perthometer" by Mahr Company, Göttingen, Germany) for all surface conditions to characterize the average roughness depth, R_a, which is a 10-point average distance between the five highest peaks and five deepest valleys within the sampling length from the roughness profile. The measured roughness values R_a were: 1.8 μm for the untreated condition, 0.7 μm for the deep rolled condition, 2.1 μm for the laser peened condition with a coating and 15 μm for the laser peened condition without a coating.

The fatigue properties of the untreated (annealed) material were compared to surface treated specimens subjected to either deep-rolling or laser-shock peening. Deep-rolling was performed with a so-called ball-point rolling device, using a hydrostatic spherical rolling element (6.6-mm diameter) with a constant feed of 0.1125 mm per revolution and a rolling pressure of 150 bar (rolling force of 5 kN). The main feature of the ball-point deep-rolling device is the burnishing ball which is hydrostatically suspended by pressurized liquid, either oil or water soluble coolant. The hard ball is pressed with controllable operating pressure against the work piece and can move freely while the work-piece is rotated. This treatment is akin to lathe machining with a hydrostatically-seated spherical rolling element instead of the cutting tool.

Laser-shock peening was carried out in two principal variants: the first without the use of a coating on the sample and the second with black paint as sacrificial coating. For the first method without a coating, a Q-switched frequency doubled Nd:YAG-laser (wavelength 532 nm), with a spot size of 0.8 mm (which can be variable), a power density of 5 GW/cm² and a coverage of 36 shots/mm² (1800% for an illumination diameter of 0.8 mm), was used, as described in detail elsewhere [27]. For the second approach with a coating, a Nd:Glass-laser (wavelength 1064 nm) was used, with a spot size of 2x2mm², a power density of 10 GW/cm² and a coverage of 200%.

Stress-life fatigue testing on both untreated and surface treated material was carried out using smooth-bar cylindrical specimens, cycled in tension-compression under load control, on a 160kN-servo-hydraulic testing machine (Carl Schenck AG, Darmstadt) with a load ratio (minimum to maximum loads) of $R = -1$; a test frequency of $f = 5$ Hz (sine wave) was employed with varying stress amplitudes to give fatigue lives between 10^3 and 10^6 cycles. Specimens were tested in room air at temperatures between 22° and 550°C, the elevated temperatures being achieved by in situ heating in a small thermostatically-controlled furnace. Before starting the fatigue tests, the specimens were equilibrated at temperature for ~10 min. During fatigue cycling, the axial strain (for generating the cyclic softening/hardening curves) was monitored using a capacitive extensometer. The resolution of the capacitive extensometer was in the range of 5 μm. Data are presented in the form of Wöhler curves of the applied stress amplitude S as a function of the numbers of cycles to failure (N_f). The S/N_f data and the data for generating cyclic softening/hardening curves originated from the same tests and samples. The plastic strain amplitudes in the stress-controlled cyclic deformation curves (Fig. 5) were determined in the following way: During the fatigue tests extensions (measured by the capacitive extensometer) and forces (measured by the load cell) were registered every 10 ms and full force-extension hysteresis loops were recorded after 1, 5, 10, 20, 50, 60, 80, 100, 200, 300, 400, 600, 1000, 2000, 3000, 4000, 6000, 7000, 10000, 15000, 30000, 50000, 700000 and 1000000 cycles by the software (a record in situ of the hysteresis loops (total) strain). The average grain size was ~15 μm after heat treatment.

The hysteresis loops by dividing the force by the initial cross section of the specimen and by dividing the extension by the gauge length. A correction of the cross section area during the fatigue test was not performed. The plastic strain amplitudes of the fatigue cycles mentioned above were then determined as the half-widths of the hysteresis loops (half of the plastic strain range) at zero stress. For generating the Manson-Coffin plot, plastic strain amplitudes were taken from 0.9N_f (N_f = number of cycles to fracture) instead of (the more common practice) 0.5N_f. This was done because for our data this procedure generally gave better linear regressions (in the double logarithmic Manson-Coffin plot) than values taken at 0.5N_f. This is possibly due to a more "saturated" or stable dislocation arrangement at 0.9N_f, as compared to 0.5N_f. In all cases, care was taken that no data were used from the cyclic deformation curve from a stage where macro crack propagation had already occurred.
To characterize the nature of the surface in the mechanically treated surface layers, transmission electron microscopy (TEM) was performed with a Philips CM 200 microscope at an acceleration voltage of 200 kV. Plan view TEM foils (parallel to the stress axis of the fatigue tests) at two different depths below the surface (0-2 µm, termed “surface”; 4-6 µm, termed “subsurface”) were generated by a combination of twin and single jet-polishing at a temperature of -15°C using a perchloric acid/ethanol electrolyte. Usually bright-field images were recorded under two-beam conditions. Corresponding fracture surfaces were examined with scanning electron microscopy using secondary electron imaging.

Residual stresses were determined by standard x-ray diffraction techniques using line shifts of x-ray diffraction peaks. Lattice strain measurements were performed using CrKα radiation at the (201)-lattice planes of the hexagonal α-phase. To calculate the residual stresses, the sin²ψ-method was applied using the Voigt elastic constant 1/2Ec = (1 + ν)/E = 12.09 x 10⁶ mm²/N, where E is Young’s modulus and ν is Poisson’s ratio [28]. Specifically, linear regression was used to determine the slopes of 20 vs. sin²ψ for stress determination (ψ = tilt angle, θ = scatter angle for constructive interference (Bragg diffraction)³, with a total of 11 ψ angles used for each measurement. The stress state was assumed to be biaxial, with the bulk of information of the diffracted x-ray originating from the surface. All residual stresses and “full width at half maximum” (FWHM) values were measured in longitudinal direction of the specimens. A collimator with a diameter of 1 mm was used for illuminating the specimens.

3. Results and Discussion

3.1. Microstructure of the near-surface layers

The near-surface microstructures of the untreated, deep-rolled and laser-shock peened (without coating) conditions are shown in Fig. 2 prior to fatigue testing. In the untreated condition, a dislocation density of 10⁵-10⁶ cm⁻² was present within the α-phase, although dislocation densities were somewhat higher close to the interface between α-phase and β-lamellae.

In the deep rolled condition the deep-rolling process induced a thin (1-2 µm) nanocrystalline surface layer by the severe plastic surface deformation (SPD) in the direct surface regions. The crystallite sizes were about 50 nm directly at the surface. Due to the formation of high-angle grain boundaries, a strong orientation contrast between the crystallites occurs. Similar to deep-rolled austenitic steels [29], the nanocrystallites exhibit a complex lamellar substructure, possibly caused by high elastic strain and/or internal twinning. In contrast to the steel, the grains size distribution is broader and resembles the nanostructure in the first stages of nanocrystallization of ball milled metals [30]. At greater depths (> 2 µm) in the deep-rolled condition, high dislocation densities similar to the direct surface microstructure of the laser-shock peened condition were observed.

A different microstructure is observed after laser-shock peening: here, no nanocrystallites were formed, but the dislocation arrangement consisted of diffuse tangled and debris-like structures, cell formation was not observed, the dislocation arrangement was almost entirely planar.

Both laser-shock-peening and deep-rolling led to a significant increase in the near-surface dislocation density of the α-phase in the range of 10¹¹ cm⁻². Both laser-shock peening and deep-rolling increased the microhardness from ~300-320 VPN to 375-400 VPN, with the increase being somewhat more pronounced in the deep-rolled condition.

Compressive residual stresses of ~600-700 MPa were measured at the surface after both surface treatments. The work-hardened zone (mechanically hardened “case”) extended about 1 mm into depth for deep-rolling and 0.9 mm into depth for laser-shock peening.

³ The angle between an incident x-ray beam and a set of crystal planes for which the secondary radiation displays a maximum intensity as a result of constructive interference
3.2. Effect of mechanical surface treatments on the fatigue life of Ti-6Al-4V at 22°C

The stress/life S/N fatigue behavior of Ti-6Al-4V is plotted in Fig. 3 in terms of the stress amplitude σ_a as a function of number of cycles N_i to failure (at $R = -1$, 5 Hz frequency) for the deep-rolled and laser-shock peened structures, as compared to the untreated structure, at 22°C. At room temperature, it is apparent that deep-rolling and laser-shock peening can increase the fatigue endurance strength at 10^5 to 10^7 cycles by some 25% or more, i.e., the endurance strengths under pure tension-compression loading are more than 100 MPa higher after mechanical surface treatment. It should be noted from this figure that laser-shock peening performed without coating generally yielded higher fatigue strengths and/or higher cycles to failure than peening with coating; this is not necessarily a general trend for all materials, however, as similar studies [32] on AISI 304 stainless steel showed no noticeable effect on fatigue lives whether or not a coating was used.

For the untreated condition, the data in Fig. 3 reveal a fatigue strength of 380-400 MPa for Ti-6Al-4V at room temperature, which in good agreement with other studies [33] which reported fatigue endurance strengths of ~ 380 MPa ($R = -1$) for cycle counts out to 10^6 or 10^7 cycles.

It should be noted that the fatigue strength values of 380 and 480 MPa in Fig. 3 for, respectively, the untreated and mechanically surface treated conditions correspond to just one unbroken specimen per treatment and were not obtained through a staircase method. Hence great care has to be taken while interpreting these non-statistically evaluated S/N curves.

3.3. Effect of mechanical surface treatments on the fatigue life of Ti-6Al-4V at elevated temperatures

Corresponding S/N curves for behavior at 250°C, 350°C, 450°C, and 650°C are shown in Fig. 4. At 250°C, it is apparent that although the fatigue strength has generally decreased compared to room temperature behavior, the mechanical surface treatments still have a significant effect in enhancing the fatigue strength. Specifically, compared to the untreated condition, both deep-rolling and laser-shock peening increased the 10^6-cycle fatigue strength by well over 25% (~ 100 MPa). A similar picture can be observed at test temperatures of 350°C, 450°C, and 550°C (Figs. 4b-d respectively), although the elevation in the 10^6 cycles fatigue strength from the mechanical surface treatments is progressively decreased to ~ 50 MPa at 350°-550°C (which corresponds to a fatigue strength increase of 10-15%).

The beneficial influence of mechanical surface treatments on the fatigue life is also prevalent in the low cycle fatigue (LCF) regime at lifetimes less than 5×10^4 cycles, although the effect is reduced to near zero for lifetimes shorter than 10^5 cycles. This is attributed to instability of near-surface work hardening, microstructures and compressive residual stresses, as noted elsewhere [11,34-38]. At all temperatures, except for 550°C, deep-rolling treatments provide slightly superior, or at least equivalent, improvements in fatigue lifetimes compared to laser-shock peening (performed using a surface coating). At 250°-450°C, laser-shock peening (without coating) is also capable of producing at least as high fatigue lives as deep-rolling, although with only limited data available, it is not as yet clear whether this represents a general trend.

The cyclic deformation behavior of the untreated and deep-rolled material conditions at 250° and 350°C are shown in Fig. 5. Room temperature behavior in the untreated Ti-6Al-4V was qualitatively similar to that reported previously [39], namely slight cyclic softening with increasing number of cycles. Cyclic deformation curves (plastic strain amplitude ε_{ap} vs. number of cycles N) for the untreated and deep-rolled conditions were similar in shape, although levels of strain were different; the laser-shock peened samples, conversely, often exhibited earlier cyclic softening [18]. Principally, three types of cyclic deformation curves were observed: (i) Generally, at high mechanical or thermal loading ($\sigma_a > 500$-550 MPa at 250°C and 350°C or $\sigma_a > 430$ MPa at 550°C), i.e., at shorter lives in the LCF regime, monotonic cyclic softening was observed; (ii) Conversely, at low stress amplitudes or temperatures, i.e., at longer lives in the HCF regime, no pronounced softening could be seen ($\sigma_a < 460$ MPa at 350°C or up to $\sigma_a = 800$ MPa at below 250°C); (iii) Between these two extremes at medium

The increase in fatigue strength from surface treatment has been reported to be even more pronounced for samples tested in rotary bending or in pure bending [11,31].
stress amplitudes or temperatures (460 MPa < σ_a < 540 MPa at 350°C), cyclic softening was typically followed by cyclic hardening over the majority of the fatigue life until macrocrack propagation and fracture intervened. In all cases, higher stress amplitudes and temperatures led to higher plastic strain amplitudes.

It is evident from Fig. 5 that the cyclic deformation behavior (under stress control) of untreated and deep-rolled Ti-6Al-4V changes with rising temperature in the range 250° to 350°C from one of monotonic cyclic softening, i.e. an increase of the plastic strain amplitude with increasing number of cycles) to cyclic softening followed by cyclic hardening. This observation is consistent to previous studies on Ti-6Al-4V [40-42], which showed that at 350°C cyclic softening was followed by cyclic hardening for low strain amplitudes whereas monotonic cyclic softening occurred at high strain amplitudes, with no saturation in cyclic hardening apparent [9].

With respect to the LCF-regime, a Manson-Coffin-plot of the plastic strain amplitude as a function of the number of cycles to failure for both the untreated and deep-rolled Ti-6Al-4V alloys is shown in Fig. 6. It is apparent that the Manson-Coffin behavior is not strongly dependent on temperature. Specifically, Manson-Coffin exponents (i.e., slope of the plot (Table 1) were significantly but not drastically different between 250° and 550°C (room temperature: -0.76; even at 550°C it only increased to -0.96). At high homologous temperatures, Manson-Coffin exponents of metallic alloys can become highly temperature-dependent where creep effects become significant [43], in contrast to lower homologous temperatures where this is not generally the case [44]. The former is often characterized by a transition from fatigue-dominated to creep-dominated failure [45] with a consequent change in mechanism to intergranular failure; no such phenomena were apparent with the current materials where crack paths were primarily transgranular. However, it should be noted that at very high stress amplitudes and high temperatures, pronounced cyclic creep occurs, i.e., a total mean strain of ~2% at σ_a = 600 MPa at 250°C or at σ_a = 430 MPa at 550°C. The data from total strain control were taken from ref. [40]. There, the experimental conditions were notably different (apart from the control mode) from those in our experiments. More specifically, the temperature was 350°C and the strain rate was 10^{-3} s$^{-1}$ or smaller (and therefore by a factor of roughly 10 smaller than in our tests). In addition, the environmental atmosphere was vacuum and not air. We are well aware, that these test conditions are significantly different from our stress-controlled tests. The Manson-Coffin plot from the data resulting from total strain control experiments at 350°C /vacuum also used plastic strain amplitudes at 0.5N_f (data from ref. [40]). Nevertheless, it shows that despite these different conditions, an approximately similar Manson-Coffin plot can be derived, although the slopes are somewhat different (Table 1).

In general though, exponents were closer to -0.5 for the deep-rolled structures, as compared to -0.8 for the untreated structures. The intersecting point is around 2×10^3 cycles in the LCF regime, meaning that for lives in excess of this, the deep-rolled Ti-6Al-4V structures will exhibit progressively longer lives than the untreated structures at a given stress amplitude. We can conclude from this that the process of deep-rolling is beneficial to fatigue lives in Ti-6Al-4V in both the LCF and HCF regimes, and that this benefit increases with longer lives. No hints for pronounced dynamic strain aging were observed in our tests, even at 250°C.\footnote{It is assumed that significant dynamic strain aging does not occur due to an unfavorable combination of strain rate and temperature. At 5 Hz, the strain rates were typically as high as $\dot{\varepsilon}$/dε $\sim 10^{-2}$.}

The different fatigue results from the various surface conditions are clearly not just a consequence of the different surface roughness values. Although the deep-rolled condition shows a significantly lower surface roughness than the untreated material, the laser-peened conditions (and here especially the laser-peened condition without coating) exhibit a pronounced micro-topography and increased surface roughness. In spite of the increased roughness, however, both the laser-peened conditions show cyclic lifetimes which are comparable or sometimes even superior to the fatigue lives of the deep-rolled condition. In practice, it is very difficult to delineate the effect of surface roughness on the fatigue life and strength in mechanically surface treated materials from other effects. To clearly separate the effect of surface roughness from other factors the study would require identical microstructures (at and closely beneath the surface), identical residual stress and texture states, identical damage mechanisms and identical "case" depths of the different surface treatments.
In addition to the nanocrystalline surface zone in the deep-rolled surface state, the different surface roughnesses in the various mechanically surface treated conditions have to be taken into account, especially in the HCF regime, where crack initiation consumes the greater part of fatigue life. In this study the density of the surface crack initiation sites was not investigated systematically. However, in general it was found that after deep rolling the crack density was lower than after laser (shock) peening, which in part is possibly due to the lower surface roughness of the deep-rolled condition as compared to the laser-peened ones, leading to a reduced number of local stress raisers. For fatigue tests at room temperature under rotary bending, it was shown that early crack initiation in laser-peened samples as compared to deep-rolled ones can be significantly delayed by a subsequent mechanical polishing after laser peening [20]. Although the effects of the coating on the fatigue crack density were not investigated in our studies, laser peening without a coating resulted in higher surface roughness values than laser peening with coating. It is interesting, that despite this higher surface roughness, the laser-peening treatment without a coating resulted in higher fatigue lives than the laser-shock peening with a coating, suggesting that the role of the differing surface roughnesses in this study were secondary to the more significant role of near-surface work hardening and residual stress states.

From shot peening, it is known that the detrimental effect of increased surface roughness and even microcracks can be compensated by compressive residual stress fields as well as by cold work through impeding the growth of microcracks. We presume that a similar effect takes place in the mechanically surface treated Ti-6Al-4V investigated here. In our study, although the presence of highly work-hardened layers with their nanocrystalline structure, as well as the compressive residual stresses (at temperatures below 450°C) appear to have a more pronounced effect on the fatigue life of Ti-6Al-4V, this should not imply that the role of surface roughness is unimportant; optimizing the surface topography should not be neglected since Ti-6Al-4V alloys are known to be highly notch-sensitive at room and elevated temperatures, as is apparent from their known susceptibility to foreign object damage [23].

3.4. Effect of high-temperature fatigue on near-surface microstructure

To examine the nature of the work-hardened surface layer for the deep-rolled surface condition, TEM characterization was performed after fatiguing for 2 x 10^3 cycles at a stress amplitude of 430 MPa at 200°C and at 400°C, the objective being to investigate whether combined (iso)thermal and cyclic mechanical loading affects near-surface microstructures (Fig. 7). In contrast to laser-shock peening, deep-rolling induced a nanocrystalline surface layer with a region of dense dislocation tangles below (see also Fig. 2). The nanocrystalline surface layer had an average grain size of ~50 nm; in the subsurface region some 5-10 μm below this, the microstructure was characterized by regions of heavily tangled dislocations (with a dislocation density of ~10^{11} cm^{-2}). The nanocrystalline surface layer in Ti-6Al-4V was found to remain stable after high-temperature cycling at 200°C and at 400°C. Neither significant grain coarsening nor cracking was observed in this region after 2 x 10^3 cycles, although it appears that at a depth of 5 to 10 μm a slight decrease of dislocation density was observed at the higher temperature (Fig. 7). Whereas it has been demonstrated that the near-surface microstructures induced by deep-rolling in solution treated and over-aged Ti-6Al-4V are exceedingly stable to temperatures up to at least 650°C without mechanical loading [22], the current results indicate that in the presence of mechanical loading from stress-controlled fatigue cycling, these surface layers are similarly stable at temperatures of 200°C to 400°C.

Fig. 8 shows the dislocation arrangements in the corresponding surface and sub-surface regions of Ti-6Al-4V after laser-shock peening (without coating) and cycling in stress-controlled fatigue at a stress amplitude of 460 MPa at 250°C and at 350°C. The sub-surface layer of heavily tangled dislocations again remained fairly stable during fatigue at temperature, akin to the deep-rolled treated material, although there was no evidence of the cell-like dislocation structures that are typically observed for mechanically surface treated steels after stress-controlled fatigue at high plastic strains [29,46]. The similar nature and stability of the subsurface dislocation tangles as well as the similar work-hardened "case depth" in both the laser-shock peened and deep-rolled conditions during isothermal fatigue suggest a possible explanation for the quite similar fatigue lives of both conditions at elevated temperature. However, there is one striking difference between these two microstructures,
and that is the existence of the nanocrystalline surface layer which occurs only in the deep-rolled, but
not the laser-shock peened, condition. It is well known that nanocrystalline materials have superior
fatigue crack initiation resistance as compared to microcrystalline conditions [47]; consequently, at
low and moderate homologous temperatures (< 0.4 \(T_m \)) this appears to confer an additional lifetime
benefit in deep-rolled, as compared to laser-shock peened, structures. However, with increasing
temperature (especially above 0.4 \(T_m \)), nanocrystalline materials also show aggravated creep behavior
as compared to microcrystalline materials. This may be relevant only in the early crack propagation
stage, if a combined creep-fatigue mechanism originating from the surface occurs. Indeed, at 550°C,
the laser-shock peened conditions appear to fare equally well, or even better, in terms of fatigue life
improvement compared to the deep rolled condition (see Fig. 4).

3.5. Fractographic observations

Fatigue cracks in untreated, deep-rolled and laser-shock peened samples all revealed that cracks
had initiated at the surface leading to final ductile failure at the center of the specimens; macro-images
of representative failed fatigue specimens are shown in Fig. 9. It is significant to note that the
untreated samples show far more evidence of multiple surface crack initiation, by almost a factor of
two, as revealed by the ridges that emanate from the edge of the fracture surface inwards (these are
caused by two separate surface cracks intersecting). This is certainly consistent with the notion that
the mechanical surface treatments act to suppress crack initiation (rather than crack growth) and thus
have a larger influence of fatigue resistance at long lives, e.g., in the HCF regime. Scanning electron
microscopy revealed that fatigue fracture surfaces were characterized by the presence of fatigue
striations, as shown in Fig. 9.

3.6. Role of near-surface cold-work and residual stresses

As noted above, based on results at temperatures up to 550°C, both deep-rolling and laser-shock
peening (with or without sacrificial coatings) were found to result in extended fatigue lives at elevated
temperature, although the effect was smaller than at 22°C. In previous studies [18], this behavior was
reported for loading conditions in the LCF regime; the present study confirms that the beneficial effect
of these surface treatments also extends to the HCF regime for lifetimes in excess of \(5 \times 10^4 \) cycles
(Fig. 10). Since near-surface work hardening as well as compressive residual stresses are clearly more
stable in the lower stress HCF regime [35,36,48,49], the lifetime and fatigue strength improvements
are logically superior to those observed at shorter lifetimes.

Traditionally, one major effect of mechanical surface treatments in promoting fatigue resistance
has been ascribed to the generation of compressive residual stresses. While this is well known to be
beneficial in improving fatigue lives, the current data in Fig. 10 do not correlate well with the stability
of near-surface compressive residual stresses. Residual stresses, measured using x-ray diffraction, are
shown in Fig. 11 for the deep-rolled samples as a function of number of fatigue cycles at temperatures
of 25°, 250°, 350°, 450° and 550°C. Prior to cycling these stresses are of the order of -500 to -700
MPa. With fatigue cycling though, there is some degree of relaxation at all temperatures; the effect,
however, is understandably far more pronounced at the higher temperatures. Specifically, after fatigue
cycling at a stress amplitude 460 MPa for half the number of cycles to failure, compressive residual
stress values were reduced by a factor of -2 to 7 to less than -200 MPa and -100 MPa, respectively, at
450° and 550°C. In spite of such a 75-90% relaxation in these stresses at 450-550°C, the fatigue lives
were still enhanced by mechanical surface treatment (indeed, the \(10^7 \)-cycle fatigue endurance strengths
at both temperatures were 50 MPa higher than at 22°C (Figs. 3 and 4)), indicating that the major
beneficial effect of deep-rolling and laser-shock peening at these higher temperatures is more
associated with the presence of the near-surface work hardened layers, which are thermally stable,
than the existence of the compressive residual stress gradients.

The stability of these work-hardened surface layers can be confirmed, not simply by the \textit{in situ}
[22] and \textit{ex situ} (Figs. 7 and 8) TEM studies, but also using x-ray peak broadening measurements,
before and after fatigue cycling to half-life, as a function of temperature. The x-ray peak broadening
measurements can be expressed by the FWHM values of the Bragg diffraction peaks.\(^6\) measured data are given in Fig. 12. The observed decrease in the broadening of x-ray diffraction peaks of deep-rolled surface regions fatigued at 550°C suggest that a rearrangement of dislocation structures can take place at temperatures above \(-450°C\). This may involve the formation of low-energy/low lattice distortion dislocation arrangements resulting from cyclic plasticity as well as by annealing or recovery processes such as dislocation annihilation and formation of low-angle boundaries. The work-hardened layers appear to be fairly stable even after fatigue cycling at the higher temperatures; specifically, at temperatures of 450° and 550°C, FWHM-values decrease only by \(-6\) and 11% respectively, confirming the relative stability of these layers to both cyclic deformation and temperature. We believe that it is these work-hardened layers that are the primary origin of the fatigue life enhancement in Ti-6Al-4V at elevated temperatures (up to 550°C) resulting from mechanical surface treatments.

Mechanistically such work-hardened layers can promote fatigue resistance by several means; these include (i) reducing the extent of local cyclic plasticity by impeding dislocation movement, which in turn reduces the driving force for crack initiation, (ii) providing a hard, very fine-grained microstructure near the surface which also acts to inhibit crack initiation,\(^7\) and iii) decreasing the early growth rates of small cracks which initiate at or near the surface [18,52]. Systematic studies on the effect of deep-rolling have shown that increasing rolling pressure leads to more pronounced as well as deeper near-surface work-hardening layers, eventually resulting in higher fatigue strengths [53]. Naturally, the compressive residual stresses play an important role too in suppressing crack initiation and early growth [54], but the essential message of the current study is that for higher temperature (~450°-550°C) fatigue behavior in Ti-6Al-4V where the residual stresses have effectively relaxed, it is the more stable work-hardened, nanocrystalline surface layers that provide the main benefit of mechanical surface treatments in enhancing fatigue strength.

4. Summary and Conclusions

Based on an experimental study of the effects of mechanical surface treatments, specifically deep-rolling and laser-shock peening (with and without coating), on the stress-controlled high- and low-cycle fatigue behavior of Ti-6Al-4V (bimodal microstructure) at temperatures of 22°C to 550°C, the following conclusions can be made:

1. Ti-6Al-4V cyclically softened during fatigue cycling at room temperature. At elevated temperatures, the shape of all cyclic deformation curves depend strongly on the temperature. With increasing temperature or stress amplitude the plastic strain amplitude increased. At T \(> 250°C\), at medium stress amplitudes (e.g., \(\sigma_a \sim 500 MPa\)), cyclic softening was followed by cyclic hardening until fracture.

2. All surface treatments significantly improved the fatigue endurance strength as well as the fatigue life in the LCF-regime in the temperature range 22°C to 550°C. With increasing temperature, the beneficial effect on fatigue lifetimes was progressively lessened due to relaxation of compressive residual stresses and the much slower degradation of the near-surface work-hardened layers.

3. Residual stress measurements in the deep-rolled and laser-peened samples as a function of temperature and number of cycles revealed that the stress relaxation follows a logarithmic cycle dependent law. Although macroscopic residual stresses at the surface decreased drastically at temperatures below 350°C, the near-surface cold work remained stable during high temperature

\(^6\) The Full Width at Half Maximum (FWHM) intensity value of an x-ray diffraction peak often provides a reasonable estimate of the degree of cold work (For instance, dislocation densities can roughly be estimated from FWHM-values according to [50]). In addition, peak broadening is not only caused by strain (e.g., micro-elastic inhomogeneous strain caused by dislocations), but also by the size of the coherently scattering regions or domains in crystals. This means that nanocrystallization causes additional broadening of Bragg diffraction peaks. However, a separation into strain- \(\) and (domain) size-effects (e.g., by profile analysis) was not performed in this study.

\(^7\) This beneficial role of the nanocrystalline microstructure at the surface has been questioned in the literature [51] as fatigue cracks may also form directly underneath such layers. However, as the stress-intensity factor developed ahead of a crack of a given size is always larger for a surface crack than an internal crack, and any environmental (e.g., corrosion) effects would be greater for the surface crack, we still reason that the role of the nanocrystalline layer in suppressing surface crack initiation and driving it sub-surface is highly beneficial to fatigue resistance.
fatigue up to 450°C; even at 550°C there was only a slight decrease of the FWHM-value after half the number of cycles to failure.

4. Corresponding TEM studies of the surface regions of laser-shock peened samples fatigued at high temperatures revealed dense and tangled dislocation arrangements just below the surface which were quite stable under combined cyclic loading and elevated temperatures up to 350°C. Similarly, a region of high dislocation density was also found in the deep-rolled condition in depths greater than 2 μm; this region was found to be very stable during fatigue cycling at temperatures up to 350°C. In addition, due to the severe and repeated plastic deformation as well as the 3-4 orders of magnitude lower strain rate in deep-rolled compared to laser-peened structures [8], a nanocrystalline, 1-2 μm thick, surface layer was formed after deep-rolling. TEM studies revealed that these nanocrystalline regions remained unaffected in thermomechanical loading by the fatigue cycling at elevated temperature up to ~400°C.

5. Mechanistically, the main effect of such heavily dislocated nanoscale near-surface microstructures appears to be in the suppression of surface crack initiation and early small crack growth, especially in the HCF-regime. An observed decrease of broadening of x-ray diffraction peaks of deep-rolled surface regions fatigued at 550°C suggest a rearrangement of dislocation structures into low-energy/low lattice distortion networks at temperatures above 450°C. At temperatures below ~250°-350°C, compressive residual stresses of about -400 MPa remain after cycling and are therefore assumed to contribute significantly to lifetime extension due to the mechanical surface treatments.

6. Both surface treatments provide an effective means of fatigue life enhancement at all but very short lives. Fatigue life enhancement is still in evidence up to ~250°-350°C as there is little significant relaxation in surface compressive residual stresses and the near-surface work-hardened layers remain stable. At T = 450°-550°C, however, the residual stresses have essentially completely relaxed but the comparable stability of the work-hardened surface layers to both cyclic plasticity and temperature lead to enhanced fatigue resistance (with a 50 MPa higher fatigue strength of deep-rolled or laser-shock peened Ti-6Al-4V as compared to the untreated alloy) at 450° and 550°C.

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant numbers AL 558/1-2, 1-3 and 1-4. The involvement of ROR was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Mr. C. Rüppel, Dr. I. Nikitin and Dr. M. A. Cherif for their experimental assistance.

References

LIST OF TABLE CAPTIONS

Table 1: Manson-Coffin slopes b of the regressions in Fig. 6. Corresponding equation for the Manson-Coffin regression: $y = a \cdot x^b$.

LIST OF FIGURE AND TABLE CAPTIONS

Fig. 1: Optical micrograph of the microstructure of the bimodal Ti-6Al-4V (solution treated and overaged) alloy, showing interconnected equiaxed primary α-grains (light colored) interdispersed within $\alpha+\beta$ (transformed β) colonies (grey-lamellar like). Sample was etched for ~10 s in Kroll solution), i.e., five parts 70% HNO$_3$, ten parts 50% HF, and 85 parts of H$_2$O.

Fig. 2: Bright-field TEM-micrographs of the near-surface microstructures of the annealed (a), deep-rolled (b) and laser-shock-peened (c) condition showing the typical work hardening state of surface regions before (a) and after mechanical surface treatment (b and c) (distance to surface 0-2 µm, perspective: not cross-sectional, but plan view).

Fig. 3: S/N fatigue curves at $R = -1$ for Ti-6Al-4V at room temperature for the annealed (non-surface treated), laser-shock peened and deep-rolled surface treated materials.

Fig. 4: S/N fatigue curves at $R = -1$ for Ti-6Al-4V at 250$^\circ$C (a), 350$^\circ$C (b), 450$^\circ$C (c) and 550$^\circ$C (d) for the annealed (non-surface treated), laser-shock peened and deep-rolled surface treated materials.

Fig. 5: Cyclic softening curves at different stress amplitudes for isothermally fatigued Ti-6Al-4V at 250$^\circ$C ((a) and (b)) and 350$^\circ$C ((c) and (d)) in the untreated ((a) and (c)) and in the deep-rolled ((b) and (d)) conditions.

Fig. 6: Manson-Coffin-plot for deep-rolled and untreated Ti-6Al-4V at room temperature and elevated temperature.

Fig. 7: TEM micrographs of the nanocrystalline surface regions and sub-surface regions (5 µm below the surface) of deep-rolled Ti-6Al-4V after stress-controlled high-temperature fatigue at 200$^\circ$C and at 400$^\circ$C. Samples were cycled at a stress amplitude of 430 MPa for 2,000 cycles. In view of Figs. 2 and 7, it is evident, that the nanocrystalline surface region, as well as the highly work hardened sub-surface region exhibiting a highly tangled dislocation arrangement, remained stable during high-temperature fatigue at both temperatures at this stress amplitude.

Fig. 8: Surface regions of laser-shock peened (with coating) Ti-6Al-4V after stress-controlled high-temperature fatigue at 250$^\circ$C (a) and 350$^\circ$C (b). Samples were cycled at a stress amplitude of 460 MPa for 50,000 and 18,000 cycles, respectively (equivalent to $N_f/2$) (TEM micrograph)

Fig. 9: SEM micrographs (using secondary electrons) of the fracture surfaces of untreated (a) and of deep-rolled Ti-6Al-4V (b) (stress amplitude 540 MPa at 250$^\circ$C). (c) SEM micrograph (using secondary electrons) of the fracture surface of untreated Ti-6Al-4V (stress amplitude 370 MPa at 550$^\circ$C). (Arrow in (c) indicates the general direction of crack propagation).
Fig. 10: Fatigue strength of untreated and deep-rolled Ti-6Al-4V as a function of test temperature at 10^6 cycles to failure ($R = -1$, 5 Hz frequency).

Fig. 11: Residual stress relaxation at the surface of deep-rolled specimens during stress-controlled fatigue (at a stress amplitude 460 MPa) at different isothermal fatigue temperatures.

Fig. 12: Peak-broadening of x-ray diffraction peaks (FWHM-values) at the surface of deep-rolled specimens during stress-controlled fatigue (at a stress amplitude 460 MPa) at different isothermal fatigue temperatures.
Table 1: Manson-Coffin slopes b of the regressions in Fig. 6. Corresponding equation for the Manson-Coffin regression: $y = a \cdot x^b$.

<table>
<thead>
<tr>
<th>Condition</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>untreated condition, 22°C</td>
<td>-0.76</td>
<td>77.18</td>
</tr>
<tr>
<td>untreated condition, 550°C</td>
<td>-0.96</td>
<td>408.89</td>
</tr>
<tr>
<td>deep rolled condition, 22°C</td>
<td>-0.61</td>
<td>34.47</td>
</tr>
<tr>
<td>deep rolled condition, 550°C</td>
<td>-0.47</td>
<td>12.67</td>
</tr>
<tr>
<td>untreated condition, 22°C</td>
<td>-0.67</td>
<td>25.17</td>
</tr>
</tbody>
</table>
untreated
untreated (from [18])
deep rolled
deep rolled (from [18])
laser-shock peened with coating
laser-shock peened without coating

LSP without coating
LSP with coating
Figure 6

Plastic strain amplitude (%) vs. Number of cycles to failure for different treatment conditions:
- Untreated stress control
- Deep rolled stress control
- Untreated 550°C stress control
- Deep rolled 550°C stress control
- Untreated 350°C/62°C vacuum total strain control
Figure 7

Click here to download high resolution image

surface

5 μm depth

200°C

400°C
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.