Title
CURRENT DISTRIBUTION ON A PLANE BELOW A ROTATING DISK

Permalink
https://escholarship.org/uc/item/9jr3v1pz

Authors
Homsy, Robert V.
Newman, John.

Publication Date
1973-08-01
CURRENT DISTRIBUTION ON A
PLANE BELOW A ROTATING DISK

Robert V. Homsy and John Newman

August 1973

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Current Distribution on a Plane Below a Rotating Disk

Robert V. Homsy and John Newman

Inorganic Materials Research Division, Lawrence Berkeley Laboratory, and Department of Chemical Engineering; University of California, Berkeley 94720

August 1973

ABSTRACT

The current distribution on a stationary disk electrode below a rotating disk at high Schmidt numbers is calculated at various fractions of the limiting current. Numerical results for the case of Tafel polarization show that the current density on the plane becomes more nonuniform as the limiting current is approached.

Key Words: current distribution, mass transfer, electrode kinetics
Introduction

The rotating disk system has been used extensively in electrochemical investigations primarily because the disk is a surface of uniform accessibility and it is easy to use. A slightly more complicated system consisting of a fluid driven by a rotating disk above a stationary plane has been studied recently.\textsuperscript{1,2,3} The electrode surface is a coaxial disk imbedded in the stationary plane. Figure 1 shows the system. A diffusion-layer solution to the equation of convective diffusion was found for high Schmidt numbers at conditions of limiting current.\textsuperscript{1} The current distribution was found to be nonuniform, increasing from zero at the center of the electrode to infinity at the leading edge. We shall apply here the same procedure which has been used previously\textsuperscript{4-10} for various geometries to study the behavior of this system at current densities below the limiting current.

In the treatment of the problem the following assumptions are made:

1. The working electrode is a coaxial disk imbedded in an infinite, insulating plane.

2. The rotating disk acts as a counter electrode at infinity.

(For the case in which the separation distance between the rotating disk and the plane is finite, Laplace's equation should be solved in a different way for the potential in the solution outside the diffusion layer, in order to account for the fact that the rotating disk is an insulator, or another electrode, as the case might be.)
Figure 1. Disk electrode imbedded in a stationary plane below a rotating disk.
3. The flow is fully developed and laminar.


5. Radial diffusion is negligible (valid at high Péclet numbers).

6. The treatment presented here applies to either metal deposition from a single salt solution or electrode reactions with an excess of supporting electrolyte.

Mathematical Formulation

At high Schmidt numbers the concentration varies from its bulk value only in a thin diffusion layer near the electrode surface, well within the hydrodynamic boundary layer. It is then valid to approximate the radial velocity by the first term in an expansion in distance from the electrode

\[ v_r = -y \beta(r) \]  

(1)

where \( \beta = -\partial v_r / \partial y \) at \( y = 0 \). A full discussion of the hydrodynamics of this system may be found elsewhere.\(^1\) For this system \( \beta = -r\Omega\sqrt{\mu/\nu} F'(0) \), where \( F'(0) \) is a constant determined by the dimensionless separation distance, \( \beta = L\sqrt{\mu/\nu} \).

The axisymmetric diffusion-layer solution may be superposed\(^8\) to yield the concentration derivative evaluated at the electrode surface in terms of the derivative of the surface concentration

\[ \frac{\partial c}{\partial y} \bigg|_{y=0} = -\frac{\sqrt{\beta}}{\Gamma(4/3)} \int_0^x \frac{dc}{dx} \bigg|_{x=x_0} \frac{dx}{\sqrt{r\beta}} [9D \int_{x_0}^x \sqrt{\frac{dx}{r\beta}} dx]^{1/3} \]  

(2)
where \( x = r_o - r \) is the distance from the edge of the electrode. Substitution for \( x \) and \( \beta \) yields

\[
\frac{\partial c}{\partial y} \bigg|_{y=0} = - \frac{(1-\xi)^{1/3}}{r_o \Gamma(4/3)} \left( \frac{2Pe}{3} \right)^{1/3} \int_0^{\xi} \frac{dC_o}{d\zeta} \bigg|_{\zeta=\zeta_o} \frac{dr_o}{(\zeta-\zeta_o)^{1/3}}
\]

(3)

where \( Pe = \beta r_o^3 / 2rD = - \frac{1}{2} F'(0) \) is a Péclet number,

\( Re = r_o^2 \Omega/\nu \) is the Reynolds number based on the radius of the electrode,

\( \zeta = 1-\xi^3 \) and \( \xi = r/r_o \) is the dimensionless radius.

The current density normal to the surface of the electrode is related to the concentration derivative by the relation

\[
i = \frac{nFD}{1-t} \frac{\partial c}{\partial y} \bigg|_{y=0}
\]

(4)

where \( n \) is the number of electrons produced when one reactant ion or molecule reacts and \( t \) is the transference number.

The potential in the solution outside the diffusion layer is the same as that for the rotating disk. At the surface of the electrode the potential is given by

\[
\phi_o = \frac{RT}{ZF} \sum_{m=0}^{\infty} B_m \ P_{2m}(\eta)
\]

(5)

where \( Z = -z_+ z_-/(z_+ - z_-) \) for a single salt and \(-n\) with supporting electrolyte, \( P_{2m}(\eta) \) is the Legendre polynomial of order \( 2m \) and \( \eta = \sqrt{1-\zeta^2} \) is the rotational elliptic coordinate at \( y=0 \). The
expansion coefficients $B_m$ are given by

$$B_m = -\frac{ZF\rho}{\kappa RT} \frac{\pi}{2(2^m m!)^4} \int_0^1 \eta \cdot P_{2m}(\eta) \, d\eta$$

where $\kappa$ is the conductivity of the bulk solution.

The electrode potential is the sum of the potential drop in the solution $\phi_o$, the concentration overpotential $\eta_c$, and the surface overpotential $\eta_s$

$$V = \phi_o + \eta_c + \eta_s$$

The concentration overpotential is taken to be

$$\eta_c = \frac{RT}{ZF} \ln \left( \frac{c^o}{c^\infty} \right) + t(1 - \frac{c^o}{c^\infty})$$

while the surface overpotential may be related to the current density by the Butler-Volmer expression

$$i = i_0 \left( \frac{c^o}{c^\infty} \right)^\gamma \left[ \exp \left( \frac{\alpha ZF}{RT} \eta_s \right) - \exp \left( -\frac{\beta ZF}{RT} \eta_s \right) \right]$$

where $i_0$ is the exchange current density at the bulk concentration, and $\alpha$, $\beta$, and $\gamma$ are kinetic parameters. It is convenient to refer the current density to the average limiting current density

$$\langle i_{11m} \rangle = -\frac{i_0}{\Gamma(4/3)} \frac{N}{J}$$
where

\[ N = - \frac{nZ^2Dc_{\infty}}{RTc(1-c)} \left( \frac{2Pe}{3} \right)^{1/3} \]  

and

\[ J = \frac{i_0 r D ZF}{RTc} \]  

are dimensionless parameters.

Equations (3-9) constitute a set of seven equations containing the seven unknowns: \( c_0, \frac{\partial c}{\partial y} \) at \( y=0, i, \phi, B, \eta_c \) and \( \eta_s \). The numerical method of calculation is the same as has been used previously. There are six parameters which must be specified in the dimensionless problem: \( N, J, t, \alpha, \beta, \) and \( \gamma \), along with the fraction of limiting current we wish to study. The latter may be set by specifying the current density at the leading edge of the electrode, \( i(t) \). Such a choice eliminates an iteration loop in the numerical procedure.
Results and Discussion

Because mass transfer effects are important at higher current densities, we have used Tafel polarization ($J=0$) throughout in calculating the current distributions. Figures 2 and 3 show respectively the dimensionless current density and concentration distributions on the surface of the electrode for $N=10$ at various fractions of the limiting current. All other parameters were arbitrarily set at 0.5. The limiting current curve was obtained from previous work. Figures 4 and 5 show the effect of increasing $N$ on the current density and surface concentration for a fixed current density at the leading edge ($i/i_{lim} = 1.429$).

Figure 2 shows that the current density rises monotonically from zero at the center of the electrode to a finite value at the leading edge for current densities below limiting. This behavior would be expected since both the limiting and primary current distributions are infinite at the leading edge of the electrode. The current density becomes more nonuniform as the limiting current is approached and may be seen to exceed the limiting current locally near the center of the electrode. This latter behavior has been observed for other geometries. The surface concentration increases monotonically from zero at the center of the electrode to its bulk value at the leading edge (see Figure 3). As the current density approaches its limiting value, the surface concentration tends towards zero. Figures 4 and 5 show that as $N$ is increased, both the current density and concentration distributions tend to be more uniform, as might be expected since the rate of stirring (Péclet number) is increased.
Figure 2. Current distribution for Tafel polarization.
Figure 3. Surface concentration distribution for Tafel polarization.
Figure 4. Effect of variation of N on the current distribution for Tafel polarization.
Figure 5. Effect of variation of $N$ on the surface concentration distribution for Tafel polarization.
Summary

The current density and concentration distributions on the surface of an electrode imbedded in a stationary plane below a rotating disk have been calculated at various fractions of the limiting current. At high Schmidt numbers the concentration varies from its bulk value only in a thin diffusion layer near the electrode surface. The potential distribution in the diffusion layer is determined from a superposition of the diffusion-layer solution to the equation of convective diffusion and electrode kinetic expressions, while the potential in the bulk of the solution is obtained from Laplace's equation. The calculation method used here is the same as was applied previously to the rotating disk and sphere and plane electrodes. Results for the case of Tafel polarization show that the current density becomes more nonuniform as the limiting current is approached.

Acknowledgement

This work was supported by the United States Atomic Energy Commission.
Nomenclature

$B_m$ expansion coefficients in the series for the potential

$c$ concentration of the reactant, mole/cm$^3$

$c_o$ concentration of the reactant at the electrode surface, mole/cm$^3$

$c_\infty$ concentration of the reactant in the bulk, mole/cm$^3$

$D$ diffusion coefficient of the reactant, cm$^2$/sec

$F$ Faraday's constant, 96,487 coulomb/equiv.

$F'(0)$ dimensionless radial velocity derivative evaluated at the plane

$i$ normal current density at the electrode surface, amp/cm$^2$

$i_o$ exchange current density, amp/cm$^2$

$\langle i \rangle$ average current density, amp/cm$^2$

$\langle i_{lim} \rangle$ average limiting current density, amp/cm$^2$

$J$ dimensionless exchange current density

$L$ separation distance between stationary plane and rotating disk, cm

$m$ index of summation in the series for the potential

$n$ number of electrons produced when one reactant ion or molecule reacts

$N$ dimensionless parameter related to the significance of mass transfer (see Equation 11)

$P_{2m}$ Legendre polynomial of order $2m$

$Pe$ Péclet number, $-F'(0) Sc Re^{3/2}/2$

$r$ radial coordinate, cm

$r_o$ radius of electrode, cm

$R$ universal gas constant, 8.3143 joule/mole-deg

$Re$ Reynolds number, $r_o^2 \Omega/\nu$
Sc  Schmidt number, $\nu/D$

t  transference number of reactant

T  absolute temperature, °K

$v_r$  radial velocity component, cm/sec

V  potential of the electrode, volt

x  distance from the edge of the electrode, cm

$x_0$  integration variable in Equation 2

y  normal distance from the electrode surface, cm

$z_i$  charge number of species $i$

$z = z_+ z_-/(z_+ - z_-)$ for a single salt

-n for reactions with excess supporting electrolyte

$j$  dimensionless separation distance between stationary plane and rotating disk, $L\sqrt{\alpha/\nu}$

$\alpha, \beta, \gamma$  parameters in the kinetic expression (see Equation 9)

$\beta(r)$  radial velocity derivative at the plane, $-\partial v_r/\partial y$ at $y=0$, sec$^{-1}$

$\Gamma(4/3)$  the gamma function of $4/3$, 0.89298

$\zeta$  $1-\zeta^3$

$\zeta_0$  integration variable in Equation 3

$\eta$  rotational elliptic coordinate at $y=0$, $\sqrt{1-\zeta^2}$

$\eta_c$  concentration overpotential, volt

$\eta_s$  surface overpotential, volt

$\Theta_o$  dimensionless concentration of the reactant at the electrode surface, $c_o/c_\infty$

$\kappa$  conductivity of the bulk solution, ohm$^{-1}$ cm$^{-1}$

$\nu$  kinematic viscosity, cm$^2$/sec
\[ \xi \quad \text{dimensionless radial coordinate, } r/r_o \]
\[ \pi \quad 3.14159 \]
\[ \phi_0 \quad \text{potential in the bulk extrapolated to the electrode surface, volt} \]
\[ \Omega \quad \text{angular velocity of rotating disk, rad/sec} \]
References


This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.