Lawrence Berkeley National Laboratory
Recent Work

Title
CONTROL OF THE CLOSED ORBIT IN SYNCHROTRONS BY DISPLACEMENT OF MAGNETS

Permalink
https://escholarship.org/uc/item/9k00467p

Authors
Lambertson, G.R.
Laslett, L. Jackson.

Publication Date
1967-09-01
CONTROL OF THE CLOSED ORBIT
IN SYNCHROTRONS BY DISPLACEMENT OF MAGNETS

G. R. Lambertson and L. Jackson Laslett

September 6, 1967

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Invited Paper Presented at the
Sixth International Conference
on High Energy Accelerators,
September 1967

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

CONTROL OF THE CLOSED ORBIT IN
SYNCHROTRONS BY DISPLACEMENT OF MAGNETS

G. R. Lambertson
L. Jackson Laslett

September 6, 1967
CONTROL OF THE CLOSED ORBIT IN SYNCHROTRONS BY DISPLACEMENT OF MAGNETS*

G. R. Lambertson
L. Jackson Laslett

Lawrence Radiation Laboratory
University of California
Berkeley, California
September 6, 1967

At the 1965 Conference in Frascati, results of Lambertson and Laslett\(^\text{(1)}\) were reported concerning the adjustment of a closed orbit through use of information obtained from electrodes that detect the location of the synchrotron beam within the vacuum chamber. Such a technique would be useful for compensating errors that develop in the magnet ring, and also would be helpful in repositioning the beam for various research applications. The actual adjustment of the beam position could be effected by magnetic corrections, by positional adjustment of the magnetic elements of the ring, or by a combination of these methods -- and in practice magnetic corrections might best be used to influence the orbit early in the acceleration cycle. The work to be described in the present report concerns further study of the effectiveness of positional adjustments for compensating positional errors of the magnet-ring structure.

As in the work previously reported,\(^\text{(1)}\) we have employed as an example a magnet structure containing a large number of moveable support points \((276)\),\(^\text{(2)}\) that exceeds the number of locations at which it would be practicable to provide beam-control sensors. A correction system therefore does not, under these circumstances, provide a unique means of annulling the orbit displacements at the pickup stations.

* Work done under the auspices of the U.S. Atomic Energy Commission.
Accordingly it is expedient to combine the possible corrective support movements into a limited number of groups, each involving the movement of 10 to 11 neighboring supports to provide a smooth bell-shaped hump (or slump), and to correct or realign the magnet structure by movements of various magnitudes for these individual groups. With this grouping restriction, the movements to produce a desired repositioning of the closed orbit at the detector locations are essentially unique; it is desirable, however -- in the interest of avoiding unproductive movements and in suppressing undesired beam excursions at azimuths not monitored by detector units -- to eliminate from the correction certain "eigenvector movements" that would introduce spatial variations of either very high or very low frequency or, generally, for which a nominal amplitude of movement has very little effect on the beam.\(^1\)

The computational work presented previously\(^1\) concerned the adjustment of 72 support groups, to reposition 276 individual supports, on the basis of information derived from detectors at 72 locations around the orbit (\(\approx 4.3\) sensors per betatron wavelength). We now wish to contrast these results with similar data obtained by use of data from 144 detector locations, corresponding to approximately 8.6 sensors per betatron wavelength (Table I). In each case, a certain number (19 and 23, respectively) of the relatively unproductive eigenvector movements have been suppressed. Judged by the maximum orbit displacement after application of the proposed correction, significantly improved alignment is seen to result by the use of information from 144 sensors in those cases for which the short range nature of the initial misalignment makes it difficult to provide effective compensation.

The effectiveness of the proposed control or correction system, as we have conceived it, appears to be highly insensitive to moderate errors in one's knowledge of the true dynamical transfer matrix of the
accelerator (Table IIA). Thus if the actual "tune", Q, of the accelerator differs from that of the design machine (but does not become closer to an integer than about one-eighth of a unit), the recommended corrections are almost as effective as they would be for an ideal machine, and after several iterations of the correction procedure would give results that converge exactly to these expected ideally. Similarly, if the distinction between the conceptual accelerator (on the basis of which the recommended corrections are computed) and the actual machine lies only in the difference of means for obtaining an actual measured Q, the effect of the recommended corrections immediately is virtually identical with the effect obtained ideally (Table IIB).

In Table III are given the effects of "noise" that will occur in (a) the information derived from the beam sensors and (b) in the corrective movements that actually are applied to the ring-element supports. The presence of such sources of error (sensor- or support-noise, respectively) degrades somewhat the effectiveness of the highly complete compensation achieved in the case of the longer wave length smooth initial distortions, but does not markedly degrade the correction for the more difficult short-wavelength errors. The effect of sensor noise, moreover, "levels off" upon repeated use of the corrective procedure, since errors introduced because of this noise are intrinsically removable. Errors that result from incorrect adjustments of the supports, on the other hand, will gradually accumulate, since such errors in principle cannot be completely removed or compensated by use of the grouped supports that are visualized for application of the proposed correction system. Uncorrectable errors that gradually accumulate from this and other sources of disturbance must ultimately be suppressed by a re-survey of the ring, but such re-surveys should be required much less frequently and would need to meet less stringent accuracy requirements when used just for initial alignment and
subsequently in connection with a closed-orbit control system. Thus, it appears that reasonably realistic noise levels in the survey and the control system components are tolerable.

Finally, one might note that the beam-sensor information affords the opportunity of judging whether the significant readjustments need be made only locally, so that there would be less effort involved in making these readjustments and also a reduction of the support-noise errors that necessarily are associated with putting the recommended readjustments into effect. In computational examples for a 144-sensor system, with a certain amount of sensor noise present (R.M.S. = 0.010 unit), we have found that localized disturbed regions that generate 1 unit of closed-orbit displacement can be identified in the presence of a modest background of misalignments around the ring (R.M.S. misalignment of supports = 0.014 unit) by noting the regions wherein the closed-orbit excursions differ significantly from the free-oscillation waveform. By restricting the corrective movements to those support groups within and bordering such identified regions, a localized correction can be prescribed. In many cases this less general procedure will be found to provide an acceptable and efficient correction.

As implied above, further investigation of orbit-control systems should include the use of magnetic corrective elements as well as provisions for readjustment of the physical support structure. The effectiveness of such a system should be studied both for the accommodation of physical movements and for the ability to compensate magnetic errors in the accelerator ring. From our results obtained up to the present we are encouraged to believe that an orbit-control system employing the concepts we have outlined here would be a highly useful adjunct to a large accelerator facility, for which reliability of performance is especially important, and more specific work directed to the design of such a system would be warranted when the specific configuration and parameters of such an accelerator become definite.
REFERENCES

(2) Lawrence Radiation Laboratory Report UCRL-16000 (1965).
TABLE I
RATIO OF FINAL TO INITIAL MAXIMUM ORBIT DISPLACEMENT *

<table>
<thead>
<tr>
<th>INITIAL MISALIGNMENT</th>
<th>(S2)</th>
<th>(S6)</th>
<th>(S7)</th>
<th>(S8)</th>
<th>(S9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Support Point</td>
<td>0.734</td>
<td>0.402</td>
<td>0.138</td>
<td>0.0515</td>
<td>0.0580</td>
</tr>
<tr>
<td>72 Sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclude 19 Eigenvectors</td>
<td>0.505</td>
<td>0.0367</td>
<td>0.0415</td>
<td>0.0476</td>
<td>0.0614</td>
</tr>
<tr>
<td>144 Sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclude 23 Eigenvectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Displacements measured relative to the magnet structure and sampled computationally at 288 locations around the magnet ring.
TABLE II

EFFECT OF CORRECTION PROCEDURE APPLIED TO AN ACCELERATOR
WITH FOCUSING CHARACTERISTICS DIFFERING FROM THE DESIGN MACHINE

Length of initial misalignment: 13 L = 202 m. (88)
72 Sensors
19 Eigenvectors excluded

A. Actual Q differs from Design Value

|-----------|--------|--------|--------|--------|--------|

Ratio: \(\frac{\text{Max. Orbit Displ., Initial}^*}{\text{Max. Orbit Displ., Final}^*}\)

After First Application	0.3467	0.2167	0.0515	0.8176	8.9806
After 4 Applications	0.0585	0.0535	"	0.1561	
After 8 Applications	0.0524	0.0518	"	0.0613	

B. Actual Q Restored to Design Value by Tuning Adjustments

<table>
<thead>
<tr>
<th>Q, Design</th>
<th>16.725</th>
<th>16.725</th>
<th>16.725</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q, Actual (before restoration)</td>
<td>16.725</td>
<td>16.825</td>
<td>16.925</td>
</tr>
</tbody>
</table>

Ratio: \(\frac{\text{Max. Orbit Displ., Initial}^*}{\text{Max. Orbit Displ., Final}^*}\)

After First Application	0.0515	0.0489	0.0506
After 4 Applications	"	0.0515	0.0512
After 8 Applications	"	0.0515	0.0512

* Sampled computationally at 288 locations around the magnet ring.

XBL 679-4862
TABLE III
R.M.S. CLOSED-ORBIT DISPLACEMENT
RESULTING FROM CORRECTION PROCEDURE WITH NOISE PRESENT

<table>
<thead>
<tr>
<th></th>
<th>72 Sensors</th>
<th>144 Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19 Eigenvectors Excluded</td>
<td>23 Eigenvectors Excluded</td>
</tr>
<tr>
<td>A. SENSOR NOISE: R.M.S. Noise Value = ϵ_b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.M.S. Orbit Deviation:*</td>
<td>$0.83 \epsilon_b$</td>
<td>$0.86 \epsilon_b$</td>
</tr>
<tr>
<td>B. SUPPORT NOISE: R.M.S. Noise Value = ϵ_h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.M.S. Orbit Deviation*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From a single correction</td>
<td>$5 \epsilon_h$</td>
<td>$5 \epsilon_h$</td>
</tr>
<tr>
<td>From a previous corrections</td>
<td>$1.3 \sqrt{n} \epsilon_h$</td>
<td>$0.9 \sqrt{n} \epsilon_h$</td>
</tr>
<tr>
<td>Uncorrectable fraction of the Support Noise:</td>
<td>$\approx 26%$</td>
<td>$\approx 18%$</td>
</tr>
</tbody>
</table>

* Sampled computationally at 288 locations around the magnet ring, midway between F and D magnet units.

† Support noise introduced into 276 supports at each correction.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.