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Obfuscator Synthesis for Privacy and Utility*

Yi-Chin Wu1,2, Vasumathi Raman3,
Stéphane Lafortune2, and Sanjit A. Seshia1

1 UC Berkeley yichin.wu@berkeley.edu, sseshia@eecs.berkeley.edu
2 University of Michigan stephane@umich.edu

3 United Technologies Research Center ramanv@utrc.utc.com

Abstract. We consider the problem of synthesizing an obfuscation policy that
enforces privacy while preserving utility with formal guarantees. Specifically, we
consider plants modeled as finite automata with pre-defined secret behaviors. A
given plant generates event strings for some useful computation, but meanwhile
wants to hide its secret behaviors from any outside observer. We formally capture
the privacy and utility specifications using the automaton model of the plant. To
enforce both specifications, we propose an obfuscation mechanism where an edit
function “edits” the plant’s output in a reactive manner. We develop algorithmic
procedures that synthesize a correct-by-construction edit function satisfying both
privacy and utility specifications. To address the state explosion problem, we en-
code the synthesis algorithm symbolically using Binary Decision Diagrams. We
present EdiSyn, an implementation of our algorithms, along with experimental
results demonstrating its performance on illustrative examples. This is the first
work, to our knowledge, to successfully synthesize controllers satisfying both
privacy and utility requirements.

1 Introduction

Many systems transmit information to the outside world during their operation. For
example, location-based services require devices such as smartphones to transmit loca-
tion information to other devices or to servers in the cloud. Similarly, in defense and
aerospace applications, a network of drones may need to broadcast location informa-
tion to a variety of agents, including other drones, ground personnel, and remote base
stations. These settings often involve nodes that are resource-constrained or connected
in ad-hoc, dynamically-changing networks. Some of the transmitted information may
reveal secrets about the system or its users; therefore, privacy is an important design
consideration. At the same time, the agents to which this information is being sent must
have enough information to provide relevant services or perform other actions. Thus,
the transmission of information from the system to the outside world needs to balance
the contrasting requirements of privacy and utility.

Consider the following illustrative example:
∗This work was supported in part by TerraSwarm, one of six centers of STARnet, a Semi-

conductor Research Corporation program sponsored by MARCO and DARPA, and in part by the
National Science Foundation under grants CCF-1138860 and CCF-1139138 (NSF Expeditions
in Computing project ExCAPE: Expeditions in Computer Augmented Program Engineering) and
CNS-1421122.



Example 1. We consider a user Alice moving in a building. Information about Alice’s
location needs to be sent to a server and other agents in order to perform some useful ac-
tions; e.g., adjusting the heating system based on Alice’s location and other occupancy
levels in the building, or directing her to the closest coffee machine. Suppose also that
there are some “secret” locations, and that Alice does not want others to know when
or whether she visits these locations. An example could be a room containing highly
sensitive data, such that the mere act of being able to visit it discloses compromising
information that Alice wishes to protect (i.e., there are only a handful of people who
can visit this room, and their identity is to be kept secret). However, Alice also wants
the server to be able to compute some information that is useful based on her location,
because otherwise Alice is always cold and uncaffeinated.

Suppose that an “event generator” (e.g., on Alice’s phone) generates events based
on her movements, and broadcasts these events to other agents. Suppose further that the
quality of the service that requires tracking Alice’s reported location degrades based on
the Euclidean distance from her true location. How can one generate an output event
stream that does not reveal whether Alice visited a secret location while also providing
sufficient accuracy for determining her location for the relevant services?

Following the terminology used in supervisory control of discrete event systems
[9], we refer to the combination of the event generator and the process it is based on
(Alice, in our example) as the plant. Our goal is to introduce an element of decision-
making into the event generator so that it can modify the events to be output before
relaying them in order to meet both the privacy and utility requirements. We refer to
this decision-making as an obfuscation policy.

In this paper, we present a formalization of this problem, along with an algorithm
to synthesize an obfuscation policy. We are given a plant modeled as a finite automa-
ton, with formally specified secret behaviors and a specification of utility. The plant
must generate event strings that provide sufficient utility while hiding its secret be-
haviors from an outside observer. The privacy and utility specifications are captured
as automata-theoretic requirements on the model of the plant. To enforce both specifi-
cations, we propose an obfuscation mechanism whereby the plant edits its output in a
reactive manner, such that all resulting output strings provably satisfy the specifications.
The presented algorithm synthesizes a correct-by-construction edit function that maps
true executions of the plant to ones that achieve the privacy and utility specifications.

The paper is structured as follows. We first define the obfuscation problem in Sec-
tion 2. In Section 3 we describe our algorithm for automatically editing reported values.
The treatment in this section is “explicit”, i.e., in terms of graph operations on discrete
game structures. To address the state explosion problem, we encode the synthesis algo-
rithm symbolically using Binary Decision Diagrams (BDDs) [1], as described in Sec-
tion 4. We then demonstrate our approach empirically in Section 5, using EdiSyn, an
open source Python toolkit we developed for this purpose. We conclude after a discus-
sion about related work and future directions.

2 Preliminaries and Problem Statement

2.1 Preliminaries
A Nondeterministic Finite Automaton (NFA) is a tuple G = (Q,Σ, δ,Q0) with a finite
set of states Q, a finite set of events Σ, a partial state transition function δ : Q×Σ →



2Q, and a set of initial states Q0 ⊆ Q. An NFA G is called a Deterministic Finite
Automaton (DFA) when |Q0| = 1 and |δ(q, e)| ≤ 1 for every state q ∈ Q and event
e ∈ Σ. More explicitly, for a DFA asG = (Q,Σ, δ, q0), the single initial state is q0 ∈ Q
and the transition function is δ : Q×Σ → Q, which deterministically defines the next
state given the current state and the event.

Given an NFA transition function δ : Q×Σ → 2Q, we extend it to δ∗ : Q×Σ∗ →
2Q recursively as follows: δ∗(q, ε) = {q}, δ∗(q, e) = δ(q, e), δ∗(q, e1e2 · · · en) =
∪q′∈δ∗(q,e1)δ∗(q′, e2 · · · en), whereΣ∗ is the set of finite strings of events and ε denotes
the empty string. The language generated by G is the set of strings defined by L(G) :=
{t ∈ Σ∗ : ∃q0 ∈ Q0 s.t. δ∗(q0, t) 6= ∅}. A DFA transition function δ : Q × Σ → Q
is extended to δ∗ : Q × Σ∗ → Q in a similar manner. Also, the language of a DFA is
defined similarly. Given string t, we use t′ 4 t to denote that string t′ is a prefix of t,
and use t1:k to denote the length-k prefix of t. Finally, |t| denotes the length of t.

In this paper, the system of interest, called the plant, is modeled as a DFA G =
(Q,Σ, δ, q0). In our model, the state of the plant cannot be observed directly. However,
upon each transition, an event is emitted and can be observed by an outside observer.
Hence, an outside observer can infer the state of the plant based on the observation of
the string of events emitted upon transitions.

2.2 Threat Model

We consider a scenario where the plant G has a set of secret states QS ⊂ Q that need
to be kept hidden from the outside observer. The observer of the plant’s output strings
is a passive-but-curious adversary that has a copy of G, and can see all strings output
by the plant; the observer can mimic transitions in its copy of G based on the output
strings. We assume that the observer is also a legitimate recipient in the sense that the
plant emits strings in order to deliver some information to the observer. However, the
plant also wants to hide from the observer whether it is ever in a secret state.

In the following, we will call a string t ∈ L(G) a secret string if δ∗(q0, t) ∈ QS
and a public string otherwise.

Example 2. Alice and Bob are trying to arrange a secret meeting to exchange a top
secret package in a m × n grid world. We model the generator of Alice and Bob’s
movements as a plant G = (Q,Σ, δ, q0) with secret states QS , where

– The set of states is Q = Loc2 ∪ {init} where Loc = {1, · · · ,m× n} contains the
set of all locations on the grid word.

– The set of events is Σ = {aijbkl : i, j, k, l ∈ Loc}, where aijbkl specifies Alice’s
movement from i to j and Bob’s movement from k to l.

– The transition function δ is defined such that, for both Alice and Bob, only moving
to neighboring locations or staying at the current location is allowed.

– The set of secret states is QS = {(i, k) ∈ Loc : i = k}, where Alice and Bob are
in the same location.

We show in Figure 1 the 2×2 grid world and a partial plant automaton ofG representing
the generator of Alice and Bob’s movements. The full model ofG contains 17 states and
144 events. Because of space limitations, we do not draw all the states and transitions,
and only show a partial plant automaton of G. State init is introduced to model the



initial moment when no locations from Alice and Bob have been reported. For each
state (i, j) ∈ Loc2, there is a transition from init to (i, j) with event label aiibjj . For
each state (i, j), there is a transition from (i, j) to (k, l) with event label aikbjl as long
as k is a neighboring location of i and l is a neighboring location of j. The red states in
G are secret where Alice and Bob meet in the same location.

Let the quality of the service degrade with the L1 distance from Alice’s and Bob’s
true locations. That is, the quality loss from state (i, j) to state (k, l) is ||(ix, iy, jx, jy)−
(kx, ky, lx, ly)||1 = |ix− kx|+ |iy − ky|+ |jx− lx|+ |jy − ly|, where ix and iy are the
x-coordinate and y-coordinate of location i, and similarly for locations j, k, l. Hence,
in reporting the locations of Alice and Bob, we would like to maintain the L1-distance
between the real and the reported locations within some allowable range. This could be
because we want an external observer to be able to track the progress of Alice and Bob
towards their goal of meeting, while not knowing exactly when or where they meet.
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Fig. 1. The 2× 2 grid world and a partial plant automaton G representing the generator of Alice
and Bob’s movements.

2.3 Edit Functions

To defend against attacks as described in the previous section, we propose to add an
interface at the output of the plant that hides secret strings while preserving the utility
of the original string. The interface edits the plant’s original string t as it is produced
(“online”), such that the resulting string t̃ after editing never reveals the secret, and yet
preserves the utility of t within an allowable range. As this interface is a function that
maps each plant output event to another event or string, we refer to it as an edit function.

We permit edit functions fe : Σ∗ × Σ → Σ∗ that map an output event to another
event or string with one replacement, deletion, or insertion operation. Given past out-
put string t, fe(t, e) = o means that the plant’s output event e is edited to o. Note that
o ∈ Σ∗ in general because we allow event insertion as well as deletion. If event e is
deleted, then the output is o = ε; on the other hand, if a string tI is inserted before e,
then the output is o = tIe. Every edit function is causal: it can only edit the current
output event e and not any previous output. For convenience of notation, we also define



a string-based edit function f̂e : Σ∗ → Σ∗ recursively from fe such that f̂e(ε) = ε and
f̂e(te) = f̂e(t)fe(t, e). Note that, in general, f̂e is a partial function, and f̂e(t) may only
be defined for selected t ∈ Σ∗. Also, since an edit function is causal, its string-based
version is prefix-preserving: ∀t1, t2 ∈ Σ∗, t1 4 t2 ⇒ fe(t1) 4 fe(t2). An edit func-
tion of the above form can be implemented by a deterministic, potentially infinite-state
automaton, which we call the edit automaton, and denote by EA = (S,Σ, Trans, s0).
The elements of the EA tuple are the set of states S, the set of events Σ, the transi-
tion relation Trans ⊆ S × Σ × Σ∗ × S, and the initial state s0. Each transition in
Trans is a tuple (s, e, o, s′) of the starting state s, the input event e, the output string
o, and the target state s′. Given an edit function fe, there is a corresponding transition
relation Trans with (s, e, o, s′) ∈ Trans iff fe(t, e) = o and s is the state reached
on input string t. The transition relation for fe is deterministic: ∀s ∈ S,∀e ∈ Σ, |{s′ :
(s, e, o, s′) ∈ Trans, o ∈ Σ∗}| = 1.

Throughout the paper, we use “edit” to collectively refer to any replacement, dele-
tion, and insertion operation. We will call the output string from the plant as the original
string t, and call the string after editing as the obfuscated string t̃.

2.4 Problem Formulation

Our goal is to synthesize an edit function fe that hides the plant’s secret strings while
preserving the utility of the original strings within some allowable range. We capture
the utility of each original string t by the final state that is reached by t in the plant
DFA, and define the utility loss in mapping t to t̃ by the utility difference between the
states reached by t and t̃. Without loss of generality, we model the utility loss by an
integer-valued distance metric D : Q×Q→ N. The formal statement of the synthesis
problem is as follows:

Problem 1 (Edit Synthesis) Given a plant modeled as DFA G = (Q,Σ, δ, q0) with a
set of secret states QS ⊂ Q, utility distance D : Q × Q → N, and accuracy budget
W ∈ N, construct an edit automaton EA = (S,Σ, Trans, s0) implementing an edit
function fe such that:

(1) ∀t ∈ L(G), f̂e(t) is defined
(2) ∀t ∈ L(G), δ∗(q0, f̂e(t)) 6= ∅ and δ∗(q0, f̂e(t)) 6∈ QS (privacy specification)
(3) ∀te ∈ L(G) where t ∈ Σ∗ and e ∈ Σ, D

(
δ∗(q0, te), δ

∗(q0, f̂e(t)o)
)
≤ W and

D
(
δ∗(q0, t), δ

∗(q0, f̂e(t)o
1:k)

)
≤ W where o = fe(t, e), for k = 1, . . . , |o| − 1

(utility specification)

Remark 1. Note that the privacy specification is a safety property on the output of the
edit function.

3 Edit Synthesis Algorithm

We solve Problem 1 by formulating it as a safety game between the edit function and the
plant. Such game formulations are common for program synthesis, where the program
is modeled as a protagonist playing against the adversarial environment, with the goal
of satisfying a given specification. For the edit synthesis problem, the edit function is



the “program” to be synthesized, and the plant is the environment that provides inputs
to the edit function: adversarialism here means that the plant can evolve arbitrarily, and
the edit function must satisfy the specification under all possible evolutions.

3.1 Edit Patterns Satisfying the Specifications

To construct the game, we first want to easily determine whether an edit pattern satisfies
the privacy and utility specifications. One challenge is that determining whether an edit
pattern satisfies the privacy and utility specifications requires examining not only the
obfuscated string, but also its distance from the original string. Fortunately, we can
construct an NFA that recognizes all valid edit patterns.

Lemma 1 There exists an NFA PA, with state space O(|Q|2), that recognizes all edit
patterns satisfying the privacy specification in Problem 1.

Proof Sketch. GivenG, we first build the “edit-pattern” NFAGe = (Q,Σ∪{ε}, δe, q0)
that recognizes all edit patterns, by adding transitions to G. Transition function δe is
defined with respect to decomposition δe := δ ∪ δr ∪ δi. More concretely, consider
the plant G in Figure 1(b). The corresponding Ge is built as shown in Figure 2(a),
such that (i) all original transitions exist, as depicted by the (black) solid arrows; (ii)
the replacement transitions δr are defined by adding a replacement transition for every
event in parallel with the original transition, as depicted by the (red) dashed arrows;
and (ii) the insertion transitions δi are defined by adding a self loop for every event
at every state, as depicted by the (blue) dotted arrows. No replacement or insertion
transition is added if an original transition for the given event already exists. Deletion
is subsumed by replacement, as deleting an event is the same as replacing the event
by the empty string ε. We then construct in Figure 2(b) the “public-behavior” DFA
Gp = (Q,Σ, δp, q0) from G, by pruning away all secret states. Finally, to find all
edit patterns satisfying the privacy specification, we compose Ge and Gp and build
the product automaton PA. Specifically, the composition synchronizes δ and δp (the
original transitions), δr and δp (the replacement transitions), and δi and δp (the insertion
transitions), thereby preserving the edit choices. In sum, since Ge recognizes all edit
patterns and Gp recognizes all public behaviors, PA recognizes each edit pattern for
which no obfuscated string ever visits secret states. ut

Note that, as an interface at the output of the plant, the edit function does not change
the plant’s original dynamics. This feature is captured in our construction ofGe: neither
insertion nor replacement transition changes the real plant state in Ge. Consider an
edit pattern with t, t̃, and edit operations. We can uniquely determine a path because
each edit transition function is deterministic. Given an edit pattern from t to t̃, by the
construction of PA, the ending state of the trace of this edit pattern in PA is a state
pair (qe, qp) where qe = δ∗(q0, t) is the plant’s real state and qp = δ∗(q0, t̃) is the
state perceived by the outside observer based on t̃. Hence, with PA capturing the pair
(qe, qp) = (δ∗(q0, t), δ

∗(q0, t̃)) for every t, we can now build from PA an NFA that
recognizes all edit patterns satisfying both the privacy and the utility specifications.

Lemma 2 There exists an NFA A, with state space O(|Q|2), that recognizes all edit
patterns satisfying the privacy and the utility specifications in Problem 1.
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Fig. 2. Partial automata of the edit-pattern NFA Ge and the public-behavior DFA Gp for the
plant G in Figure 1(b). In Ge, the solid black arrows depict the original transitions, the dotted
blue arrows depict the insertion transitions, and the dashed red arrows depict the replacement
transitions.

Proof. Consider PA from Lemma 1 that recognizes all editing patterns satisfying the
privacy specification. Because the distance function D is defined with respect to state
pairs, we can determine if the given editing pattern violates the utility specification
based on the reached state pair in PA. That is, we can build A from PA by pruning all
(qe, qp) where D(qe, qp) > W . ut

3.2 Safety Game Formulation

The edit synthesis problem is formulated as a safety game between the edit function and
the plant. In the safety game, the outputs of the plant are the inputs to the edit function,
and the edit function must react to its inputs (i.e., the plant’s outputs) and satisfy both
the privacy and the utility specifications. If the edit function can reactively satisfy the
specifications regardless of what the plant does, then its reactions form a winning strat-
egy in the formulated safety game. Conversely, a winning strategy in the safety game
can be converted into an edit function that solves the edit synthesis problem.

Formally, a two-player safety game structure is GS = (V1, V2, Σ, ρ1, ρ2, v0) where
V1 and V2 are sets of game positions, Σ is the action set, ρ1 : V1 × Σ → V2 and
ρ2 : V2 × Σ∗ → (V1 ∪ ⊥) are the transition functions, and v0 ∈ V1 is the initial
position. We note that, actions of the edit function are strings inΣ∗ and ρ2 has a domain
of V2 × Σ∗ because the edit function can react by inserting a string. The game starts
with player 1, and subsequent plays alternate between players 1 and 2. Position ⊥ is a
special position where player 2 loses and player 1 wins.

In the game corresponding to the edit synthesis problem, player 1 is the plant, who
moves on positions in V1 according to transition function ρ1, and player 2 is the edit
function, who moves on positions in V2 according to ρ2. A play of GS is a sequence
of positions v0v1v2 · · · ∈ (V1V2)

∗ that starts from the initial position. Given a play, the
edit function wins if ⊥ is never visited, and the plant wins otherwise.



Consider the automaton A = (Q2, Σ ∪ {ε}, δA, qA,0) in Lemma 2. Recall from
Lemma 1 that the transition function of Ge is decomposed, and the synchronous com-
position used to obtain PA distinguishes edit choices. Hence, δA can also be decom-
posed into the original transition function δA,o, the replacement transition function
δA,r, and the insertion transition function δA,i. We build the safety game structure
GS = (V1, V2, Σ, ρ1, ρ2, v0) between the edit function and the plant from A as fol-
lows.

– V1 = Q2 ∪ {⊥}, V2 = Q2 ×Σ
– ρ1 : V1 ×Σ → V2 is defined such that ∀(qe, qp) ∈ V1,∀e ∈ Σ,
ρ1((qe, qp), e) = ((qe, qp), e) if δ(qe, e) is defined

– ρ2 : V2 ×Σ∗ → V1 is defined such that ∀((qe, qp), e) ∈ V2,∀o ∈ Σ∗, we have the
following four cases:
(i) ρ2

(
((qe, qp), e), o

)
= δA,o((qe, qp), e) if o = e and δA,o((qe, qp), e) is defined

(ii) ρ2
(
((qe, qp), e), o

)
= δA,r((qe, qp), o) = (q′e, q

′
p) if o ∈ (Σ \ {e}) ∪ {ε},

δA,r((qe, qp), o) is defined, and q′e = δ(qe, e)
(iii) ρ2

(
((qe, qp), e), o

)
= δA,o

(
δ∗A,i((qe, qp), tI), e

)
if o = tIe, tI ∈ Σ∗, and

δA,o
(
δ∗A,i((qe, qp), tI), e

)
is defined.

(iv) ρ2
(
((qe, qp), e), o

)
= ⊥ if none of cases (i)-(iii) holds

– v0 = qA,0 = (q0, q0)

Transition functions ρ1 and ρ2 define all possible actions of the plant and the edit func-
tion, respectively. Specifically, ρ1 captures the plant dynamics and is determined by the
plant’s transition function δ. On the other hand, ρ2 defines all edit actions. Cases (i)-(iii)
are edit actions defined in A, which by Lemma 2 satisfy both the private and the utility
specifications. In particular, the edit function outputs the original event from the plant
in case (i), replace or delete the plant’s original output event in case (ii), insert events
before the plant’s original output event in case (iii). In case (iv), the edit action cannot
satisfy the specifications and leads to the losing position ⊥. For every plant’s output
event, the edit function reacts with one edit operation.

4 Symbolic Encoding of Edit Synthesis

So far we have assumed that the plant automaton model in the edit synthesis problem
is given explicitly, i.e., as an explicit list of states and transitions. However, in practice,
such explicit representations lead to what is known as the state explosion problem: a sys-
tem with n variables that take k possible values requires at least kn states to model, and
thus these models quickly become impractical. In order to mitigate the state explosion
problem, we represent the plant model symbolically using sets of states and sets of tran-
sitions, both represented compactly as implicit solutions to logical equations. We can
then analyze the state space symbolically using Binary Decision Diagrams (BDDs) [1].
By using BDDs to reason about propositional formulas representing the state space, we
avoid building the state graph explicitly.

In this section, we present our encoding of the given plant automaton symbolically
using propositional formulae. We will explain how the safety game can be constructed
symbolically, as well as how to extract a winning edit strategy from the symbolic en-
coding of the safety game.



4.1 Symbolic Automata

Given an explicit DFAG = (Q,Σ, δ,Q0), we encodeG symbolically as (BQ, BΣ , ∆δ, bq0),
where BQ = {yq1, · · · , yqn} is the set of Boolean variables that encode the states,BΣ =
{ye1, · · · , yem} is the set of Boolean variables encoding the events, ∆δ : BQ × BΣ ×
BQ

′ → {0, 1} is the propositional formula representing the transition function δ, and
bq0 is the Boolean encoding of the initial state. The primed set BQ

′
= {yq

′

1 , · · · , yq
′

n } is
the Boolean variables that encode the target states in transitions. Given Boolean variable
set {y1, · · · , yn}, we use y to denote the variable tuple (y1, · · · , yn). We will write χ(b)
if a function χ over variables y is evaluated with the Boolean vector b = (b1, · · · , bn).
For a function χ of variables y, we use χ{y ← z} to denote the new function obtained
from χ with the variable yi renamed to zi.

With a slight abuse of notation, we write bq ∈ Q if bq is the Boolean encoding of
a state in Q and use bq directly to refer to the given state; similar notation applies for
events and primed states. We use ∆ to denote the propositional formulae for transition
functions. Propositional formula ∆δ is defined such that ∆δ(bq, bΣ , bq

′) = 1 iff bq′ ∈
δ(bq, bΣ).

To symbolically solve the edit synthesis problem, it remains for us to encode the
privacy and utility specifications. We encode the secret state set QS as a Boolean func-
tion χQS : BQ → {0, 1} such that χQs(bq) = 1 iff state bq ∈ QS . Given the utility
distance function D and the accuracy budget W , we construct a propositional function
∆DW : BQ × BQ′ → {0, 1} such that ∆DW (bq, bq′) = 1 iff D(bq, bq′) ≤ W ; i.e., the
accuracy loss in obfuscating state bq to state bq′ is bounded by the given budget.

4.2 Symbolic Game Structure

We are now ready to solve the edit synthesis problem symbolically. Consider the plant
modeled as a symbolic automaton G = (BQ, BΣ , ∆δ, bq0), the symbolic encoding of
secret states χQS , and the propositional formula for the utility specification ∆DW . We
follow the procedures in Section 3, first building symbolic intermediate automata Ge,
Gp, PA, and A and then build the symbolic game structure.

First, we construct the symbolic edit-pattern NFA Ge = (Be, BΣ , ∆δe , b
e0) where:

– Be = {yq1, · · · , yqn} are the Boolean variables for the original plant states.
– ∆δe = ∆δ ∨∆δr ∨∆δi where
• ∆δ defines the original transitions.
• ∆δr = (∃yΣ .∆δ) ∧ ¬∆δ defines the replacement transitions.
• ∆δi = (yq ⇔ yq′) ∧ ¬∆δ defines the insertion transitions.

– be0 = bq0

We can similarly build the symbolic public-behavior DFA Gp = (Bp, BΣ , ∆δp , b
p0),

where Bp are the Boolean variables for the fake states and ∆δp prunes all secret states.
Next, we build the product automaton PA from Ge and Gp, and then prune the state
pairs that violate the utility specification to obtain A = (BA, BΣ , ∆δA , b

A0). Here
∆δA = ∆δe ∧ ∆δp ∧ χDW {yq

′ ← yp} = ∆δA,o ∨ ∆δA,r ∨ ∆δA,i is decomposed
into the original transitions ∆δA,o , the replacement transitions ∆δA,r , and the insertion



transitions ∆δA,i for technical convenience later. Symbolic automaton A recognizes all
edit patterns satisfying the privacy and utility specifications.

Finally, we build the symbolic game structure GS = (BV , BI , BO, ∆ρ1 , ∆ρ2 , b
v0).

Let yA = (yq1, · · · , yqn, y
p
1 , · · · , ypn), we will use yA⇓q to denote the projection of of yA

onto variables yqi . That is, yA⇓q = (yq1, · · · , yqn). Similarly, yA⇓p = (yp1 , · · · , ypn).

– BV = BA are the Boolean variables encoding the game positions.
– BI = BΣ are the Boolean variables for the plant’s actions. Superscript I means

they are input variables to the edit function.
– BO = {yO1 , · · · , yOm} are the Boolean variables for the edit function’s actions.

Superscript O means they are output variables of the edit function.
– ∆ρ1 : BV ×BI → {0, 1} such that ∆ρ1(y

A, yΣ , yA′) = ∆δ(yA⇓q, y
Σ , yA

′
⇓q)

– ∆ρ2 : BV ×BI ×BO ×BV ′ → {0, 1} that is decomposed into ∆ρ2,or ∨∆ρ2,i

• ∆ρ2,or(y
A, yΣ , yO, yA′) =(

∆δ(yA⇓q, y
Σ , yA

′
⇓q) ∧∆δA,o(y

A, yΣ , yA′){yΣ ← yO}
)
∨(

∆δ(yA⇓q, y
Σ , yA

′
⇓q) ∧∆δA,r (y

A, yΣ , yA′){yΣ ← yO}
)

• ∆ρ2,i(y
A, yΣ , yO, yA′) =

∃yA′′ .
(
yA′′ ∈ Reachi(yA) ∧∆δA,o(y

A′′ , yΣ , yA′)
)

, where

∗ Posti(Z) = {yA′ | ∃yΣ∃yA.(yA ∈ Z) ∧∆δA,i(y
A, yΣ , yA′)}

∗ Reachi(yA) = µZ.Posti(yA) ∨ Posti(Z)
– bv0 = bA0

Observe that ∆ρ2 is decomposed into two parts, one containing the original and the re-
placement actions ∆ρ2,or, and another containing only the insertion actions ∆ρ2,i. We
make this partition because the outputs for insertion actions are in general strings whose
lengths are not known in advance. To symbolically encode all such output strings, we
would need to introduce a potentially unbounded number of Boolean variables corre-
sponding to all possible events and intermediate states on allowed output strings. To
avoid this, we only encode in the game construction whether it is possible for the edit
function to react with an insertion action. That is, a transition (bV , bI , bO, bV ′) |= ∆ρ2,i

if it is possible to move from position bV to position bV ′ with insertion. Here, the output
bO is unconstrained as it is not used: the actual insertion string will be computed explic-
itly in the synthesis algorithm in Section 4.3. We use µ-calculus [6, 3] to formulate the
problem of determining whether it is possible to apply insertion actions. The µ-calculus
formula µZ.Posti(yA) ∨ Posti(Z) is the least fixed point that computes all positions
that are reachable from yA via a non-zero length insertion string.

When computing∆ρ2,i(y
A, yΣ , yO, yA′), the intermediate steps of the fixpoint com-

putation Reachi(yA) encode the insertions themselves, and are stored in a data struc-
ture ins to be used later to extract the edit function. Informally, we store in ins

yA,yΣ
[i]

the set of positions reachable from yA via an insertion string of length i followed by an
input event yΣ .



4.3 Synthesis

With the game structure GS , we now compute the set of winning positions for the edit
function and synthesize a winning edit strategy in Algorithm 1. We characterize the
set of winning positions W using a µ-calculus formula. Specifically, in step 1, the µ-
calculus formula νZ.Pre(Z) is the greatest fixed point containing all positions where
the edit function can continuously react to the plant with a winning edit action. If W
does not contain the initial position bv0 , then Algorithm 1 returns that the edit synthe-
sis problem is not feasible; i.e., Problem 1 has no solution. Otherwise, there exists a
winning edit strategy and we synthesize, starting from step 3, a winning edit automa-
ton EA by breadth-first search on the winning positions. The initial state of EA is the
initial position bv0 of GS . Steps 6-18 compute concrete winning actions and construct
the corresponding explicit edit automaton. χs is the set of explored positions in GS .
In each iteration, we take newly-reached positions χs,diff and compute in step 9 the
one-step winning actions act from χs,diff , using function Winning Actions. With act
being computed, in the inner while loop, we extract concrete transitions in act. In step
12, function Extract One extracts one concrete transition. Then, in step 18, we sub-
tract from act all transitions with the same game position bV and plant output event bI ,
as an edit action for that position and event has already been found. This inner while
loop terminates until act is empty. In each iteration, if the extracted transition is an in-
sertion action, then we compute the output string for the insertion action using function
Compute Insert Out. Otherwise, the output is the event bO in the extracted transition.Function Compute Insertion returns a string o of legal insertion events leading
from position bV to bV ′ on input bI , and we describe it here informally. Recall the data
structure ins stored during the fixpoint computation that defines ∆ρ2,i in Section 4.2.
Since (bV , bI , bO, bV ′) |= ∆ρ2,i, we have bV ′ ∈ ins

bV ,bI
[i] for some i ≥ 0. Informally,

bV ′ is reachable from bV via an insertion string of length i followed by bI . Note that we
will want to find a shortest such i, for which bV ′ ∈ ins

bV ,bI
[i] but bV ′ 6∈ ins

bV ,bI
[i−1].

Now, we can reconstruct a path of insertions from bV to bV ′ by working backwards
from ins

bV ,bI
[i] as follows. Set oi = bI . At each iteration, we extract an insertion

action oi−1 that leads from ins
bV ,bI

[i− 1] to ins
bV ,bI

[i]. We repeat this until we arrive

at ins
bV ,bI

[0] = bV . The resulting o = o0o1...oi is the output after insertion.

Theorem 1. Given a plant G with a set of secret states QS , utility distance D, and
accuracy budget W , Algorithm 1 returns a finite edit automaton EA = (S, Trans, s0)
that solves Problem 1, if one exists, and declares infeasibility otherwise.

Proof. Recall that the game structure GS is constructed from Ge that recognizes all
edit patterns. Hence, the symbolic GS enumerates all edit strategies in a finite structure
that satisfy the privacy and utility specifications before potentially reaching a losing
position. Because the winning set W is a set of positions where the edit function can
continuously react to the plant with an edit action satisfying the specifications, we can
synthesize an edit automaton that solves Problem 1 iff the initial game position is win-
ning. A winning edit strategy can in general require memory: it can choose different edit
actions based on the history. But because the game is a safety game, we can convert any
such strategy to a winning memoryless strategy by repeatedly selecting the same edit
action every time it visits the same game position. In fact, Algorithm 1 considers only



Algorithm 1: Edit function synthesis
input : G = (Q,Σ, δ, q0), QS ⊂ Q, D : Q×Q→ N, W ∈ N
output: EA = (S, Trans, s0)

1 Construct GS = (BV , BI , BO,∆ρ1 ,∆ρ2 , b
v0) per Section 4.2

2 Compute winning setW = νZ.Pre(Z) where
Pre(Z) =

{yA | ∀yΣ ∀yA′⇓q ∃yA
′
⇓p ∃yO.

[
∆ρ1(y

A, yΣ , yA′)⇒ yA′ ∈ Z ∧∆ρ2(y
A, yΣ , yO, yA′)

]
}

3 ifW ∧ bv0 = False then
return Infeasible

4 s0 := bv0 , S ← {s0}
5 χs ← bv0 , χs,old ← False

6 while χs 6= χs,old do
7 χs,diff ← χs ∧ ¬χs,old
8 χs,old ← χs
9 act← Winning Actions(χs,diff ,∆ρ1 ,∆ρ2 ,W)

10 χs ← χs,old ∨ act⇓A{yA′ ← yA}
11 while act 6= False do
12 (bV , bI , bO, bV ′)← Extract One(act)

13 S ← S ∪ {bV ′}
14 if (bV , bI , bO, bV ′) |= ∆ρ2,i then
15 o← Compute Insertion((bV , bI , bO, bV ′))

else
16 o← bO

17 Trans← Trans ∪ {(bV , bI , o, bV ′)}
18 act← act ∧ ¬(bV ∧ bI)

19 return (S, Trans, s0)

memoryless edit strategies. Therefore, the synthesized edit automaton is guaranteed to
be finite.

4.4 Complexity

Computing the winning set W , which is expressed as a µ-calculus formula of alter-
nation depth 1, can be solved with effort O(N) where N is the number of states the
game structure GS , which is O(n2) if n is the number of states in the plant G. Here
effort is measured in symbolic steps, i.e., in the number of preimage computations in
the fixpoint in step 1 of the Algorithm. Extracting an edit function also takes O(N),
and hence Algorithm 1 has complexity = O(N) = O(n2). However, constructing the
game structure GS has additional complexity O(N2) = O(n4) because of the least fix-
point computation for every state in the game structure when computing ∆ρ2,i. In all,
Algorithm 1 has complexity of O(n4).



5 Case Studies and Experiments

We demonstrate our approach empirically using EdiSyn, an open source Python toolkit
we developed for this purpose1. EdiSyn implements the synthesis algorithm based on
Binary Decision Diagrams (BDDs), and relies on the CUDD BDD library [11] and DD
[5], an open source Python binding to CUDD. We ran EdiSyn with Example 2 introduced
in Section 2.2. The utility distance is defined based on the L1 distance, as defined in
Section 2.2. Finally, we let the accuracy budget be 2.

We shown in Figure 3 the real and the obfuscated moving traces of Alice and Bob.
ti’s denote the time points where their locations are reported. The left figure depicts the
real moving traces. At time t2, Alice and Bob meet at location (2, 2), which corresponds
to a secret state. The right figure depicts the traces output from the edit function. The
edit function obfuscates their traces such that Alice and Bob are never reported to be
in the same location. Furthermore, the distance between the original and the obfuscated
locations always remain within 2.
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Fig. 3. Left: The original moving traces of Alice (in blue) and Bob (in red). Right: The obfuscated
moving traces output from the synthesized edit function.

We also ran EdiSyn with examples in the same settings but increasing grid sizes.
Gridk×k is the example where Alice and Bob move in the k× k grid world and want to
hide their secret meetings. The accuracy budget is set to 2 in all examples. The results
of this experiment are summarized in Table 1. For each grid example, Table 1 shows
the number of plant variables (i.e., the number of states plus the number of events), the
computation time of the symbolic implementation, the peak number of BDD nodes, and
the memory used during the synthesis computation. The experiment was performed on
an Intel Core i5 (2.4 GHz, 4 GB) machine running Mac OS X 10.10.5 Yosemite. While
we also implemented the explicit (non-symbolic) algorithm, the explicit implementation
threw outOfMemory errors on all of the grid examples.

These are preliminary results based on a simple, unoptimized implementation. In
addition to optimizing the implementation in terms of memory usage and efficiency
of operations, comparison of various variable ordering strategies for the BDDs and
reuse of intermediate stages of the fixpoint computations while constructing the game
structure are also acknowledged as worthy of further exploration. Finally, observe that
the synthesis algorithm is computed offline. Once an edit function is synthesized, it can
be used to efficiently edit the plant’s output online.

1EdiSyn is available at https://bitbucket.org/yichinwu/edisyn



Table 1. Scalability test for the grid world example, with a timeout of 60 minutes.

Example Variables Synthesis Time (min) Peak Nodes Memory (MB)
Grid2×2 161 0.05 21274 30.8
Grid3×3 1171 2.90 261446 151.3
Grid4×4 4353 42.37 1103200 637.7
Grid5×5 11651 Timeout N/A N/A

6 Related Work

This work combines perspectives and techniques from computer security and formal
synthesis. Our threat model and problem formulation are inspired by the definition of
differential privacy [2], where the consumers of data include both legitimate receivers
and adversaries, and the goal is to provide privacy while preserving utility with re-
spect to the desired data analytics. Informally, ε-differential privacy guarantees that the
resulting output is insensitive (up to a factor dependent on ε) to the modification, dele-
tion or addition of any single record in the original dataset. Utility of a differentially
private mechanism is evaluated using query-dependent measures of the deviation be-
tween results obtained from the original dataset obtained by applying the mechanism
to the original dataset. The edit functions in this work can be viewed as a discrete logic
counterpart of differentially private mechanisms; privacy and accuracy here are cap-
tured by logical conditions on the edited executions of the plant in comparison with
the real executions. Additionally, most traditional approaches to providing privacy rely
on cryptographic primitives; however, such schemes require an infrastructure to create
and distribute secret keys. In the settings we consider, especially those involving ad-hoc
and dynamic networks, and resource-constrained devices, a non-cryptographic solution
such as ours may be preferred.

There has been some previous work on the synthesis of artifacts enforcing privacy
requirements in the discrete logic setting. Specifically, synthesis for a privacy notion
called opacity has been explored by researchers in discrete event systems; see e.g., [10,
4, 12]. The edit mechanism in this paper is related to but more powerful than the in-
sertion mechanism developed in [12]. The most distinguishing feature of this work is
the threat model. All existing works on synthesis for opacity consider an threat model
where every outside observer of the system is malicious. In contrast, the malicious out-
side observer in this paper is also endowed with some legitimate observational needs.
As a consequence of this different threat model, none of the above works addresses
questions of the preserving utility of observations. To the best of our knowledge, this
paper is the first attempt to formulate the synthesis problem for both privacy and utility.
Our work is also distinguished by the presentation of a symbolic encoding of the solu-
tion. We encode the synthesis problems symbolically using Binary Decision Diagrams,
and are thereby better equipped to address the state explosion problem.

In addition to the field of discrete event systems, we draw inspiration from recent
work in robotics that considers the design of discrete filters satisfying privacy and util-
ity constraints provided as pairwise distinguishability (and indistinguishability) require-
ments on states [8]. Our work is most similar in spirit to this effort, but our privacy and
utility constraints are specified as automata theoretic winning conditions instead of pair-
wise requirements on states. In [8], the requirements are satisfied via graph colorings:



states that must be indistinguishable have the same color and ones to be distinguished
are colored differently. Our edit mechanism is more general, in that it also allows in-
serting fictitious events.

Finally, the idea of editing event labels on automaton transitions is also employed
in [7], where the authors considered a selfish environment that edits the inputs to the
plant automaton. However, the focus in [7] is on deciding whether the plant is resilient
to such a selfish environment rather than on synthesizing an edit strategy with privacy
and utility objectives.

7 Conclusion and Future Work

We have defined the problem of synthesizing an obfuscation policy that enforces pri-
vacy specifications while preserving utility. The specifications in this work were cap-
tured as automata-theoretic requirements on a finite state model of the plant’s outputs.
Our method allows plants to generate and broadcast event strings for some useful com-
putation, while simultaneously hiding certain secret behaviors from an outside observer.
To enforce the privacy and utility specifications, we automatically synthesized an edit
function that reacts to the plant’s outputs and transforms them in a way that meets both
requirements. Our synthesis algorithm was encoded symbolically, improving the effi-
ciency of obtaining a solution. This is, to our knowledge, the first work to consider
synthesis for both privacy and utility specifications.

In this work, we considered simple privacy and utility specifications: in fact, our
privacy requirement is a safety guarantee. In the future, we will explore the use of more
complicated specifications to express these desirables. For example, temporal logics are
expressive tools for stating requirements. Formulating privacy and utility as temporal
logic formulae would allow a much richer set of specifications. Also, so far our utility
specification has taken the form of an accuracy budget constraining the distance be-
tween the real and released states. In the future, we will tackle an optimization problem
that asks the question, what is the smallest budget for which the problem in this paper
becomes feasible?
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