Lawrence Berkeley National Laboratory
Recent Work

Title
SURFACE CHARACTERIZATION OF METAL OXIDE OVERLAYERS

Permalink
https://escholarship.org/uc/item/9mj102qb

Authors
Williams, K.J.
Levin, M.E.
Salmeron, M.

Publication Date
1988-08-01
Presented at the ACS Symposium Series on Role Characterization in Catalyst Development, Los Angeles, CA, September 25–30, 1988

Surface Characterization of Metal Oxide Overlayers

K.J. Williams, M.E. Levin, M. Salmeron, A.T. Bell, and G.A. Somorjai

August 1988

Materials and Chemical Sciences Division
Lawrence Berkeley Laboratory • University of California
ONE CYCLOTRON ROAD, BERKELEY, CA 94720 • (415) 486-4755

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Surface Characterization of Metal Oxide Overlayers

K.J. Williams², M.E. Levin², M. Salmeron, A.T. Bell², and G.A. Somorjai¹

Departments of ¹Chemistry and ²Chemical Engineering
 University of California
 and
 Center for Advanced Materials
 Materials and Chemical Sciences Division
 Lawrence Berkeley Laboratory
 1 Cyclotron Road
 Berkeley, California 94720

Submitted to
ACS Symposium Series on
Role of Characterization in Catalyst Development

August 1988
Introduction

Interest in the composition and structure of submonolayer metal oxide deposits on metals has developed as a consequence of growing evidence that such deposits influence the adsorptive and catalytic properties of the substrate metal [see for example ref. (1)]. In particular, it has been shown that titania deposited on a Ni(111) (2) surface and on the surface of Pt and Rh foils (3,4) will enhance the activity of the metal for CO hydrogenation. Similar results have also been reported for niobia deposited on a Pt foil (5). The present paper discusses the characterization of titania overlayers deposited on the surface of a polycrystalline Rh foil and a Rh(111) surface.

Experimental

Samples were prepared by evaporation of titanium onto a Rh foil or a Rh(111) single crystal. Subsequent oxidation with oxygen at 623 K then produced a titania overlayer on the Rh substrate. Oxygen bound to the Rh was removed as carbon dioxide by repeated exposure of the oxidized sample to 4 L of carbon monoxide followed by flashing to 773 K. The freshly deposited overlayer was then characterized by ISS, AES, and XPS. The effects of the overlayer on the substrate were probed by temperature-programmed desorption of carbon monoxide, by the hydrogenation of carbon monoxide, and by the hydrogenolysis of ethane. All of these experiments were carried out in one of two ultra high vacuum chambers, one of which was equipped with a high pressure cell for carrying out catalytic reactions.

Results

Coverage of the Rh surface by titania was followed by means of ISS and AES. Figures 1 and 2 show the ISS and AES signals for Rh as a function of
the deposition times for metallic titanium. The ISS signal exhibits a linear decline with the deposition time, and at a time of 150-175 s, the Rh signal goes to zero. The Rh AES signal also follows a linear decrease in intensity for deposition times of less than 175 s. For longer deposition times, the AES signal decreases more slowly. Similar results were obtained with both single crystal and polycrystalline samples.

The linear decline in both the Rh ISS and AES signals for deposition times of less than 175 s, indicates that the first monolayer of titania is deposited as a two-dimensional overlayer. If layer-by-layer growth were sustained beyond the completion of the first monolayer, then the AES signal would be expected to follow solid line shown in Fig.2. The deviation of the data from the curve for layer-by-layer growth in the time period of 175 to 400 s is indicative of some three-dimensional growth in the second layer. For longer deposition times, however, the data return to the curve predicted for layer-by-layer growth.

Temperature-programed desorption (TPD) spectra of adsorbed carbon monoxide exhibit a single peak for carbon monoxide and no evidence of carbon dioxide formation. Neither the position nor the shape of the carbon monoxide peak is a function of titania coverage. A plot of carbon monoxide chemisorption capacity versus titania coverage is shown in Fig. 3. The CO coverage is observed to decrease linearly with increasing titania coverage. A similar trend has been observed previously for titania deposited on a Pt foil (6) and on a Ru(0001) single crystal surface (7). The linear relationship between CO chemisorption capacity and titania coverage seen in Fig. 3 contrasts with that reported earlier by Levin et al. (8) for titania deposited on a Rh foil. As discussed by Williams et al. (9), this discrepancy is attributable to an incorrect determination of titania coverage by Levin et al. (8). When correctly interpreted, the data of Levin et al. (8) also show a linear dependence of CO chemisorption capacity on titania coverage. A further consequence of the reanalysis is that the
titania coverages reported by Levin et al. (8) should be multiplied by a factor of 3.3 (9).

An XPS spectrum of the Ti(2p) core levels for Rh foil covered with 0.3 ML of titania is shown in Fig. 4 (10). Spectrum (1) obtained after oxidation, exhibits two peaks centered at 463.6 and 458.5 eV that can be assigned to the 2p1/2 and 2p3/2 core levels of Ti⁴⁺ (11). A slight asymmetry is observed in the 2p3/2 peak on the low energy side, indicating the presence of a small percentage of Ti³⁺. CO titration causes an attenuation of the Ti⁴⁺ peaks and the appearance of a peak at 455.7 eV that is assigned to Ti³⁺ species (11). A peak at 461.4 eV is assigned to the corresponding Ti³⁺ (2p1/2) level. H₂ reduction causes a further decrease of the Ti⁴⁺ peak intensity and a corresponding increase in the Ti³⁺ peak intensity. Small shifts to higher binding energies of the 2p3/2 peak of Ti⁴⁺ are also observed as the degree of reduction increases. In spectrum (3) of Fig. 4, for example, the Ti⁴⁺(2p3/2) binding energy is 459.0 eV. Reoxidation of the sample returns the titanium to the Ti⁴⁺ state. Similar changes in the XPS spectrum were observed for all titania coverages studied. The principal difference noted was an increase in the proportion of Ti³⁺ as the coverage of titania decreased. This trend suggests a preferential concentration of Ti³⁺ species at the periphery of the two-dimensional TiOₓ islands.

Displayed in Fig. 5 is the methane production rate from CO and H₂ for varying TiOₓ coverages (12). Reaction rates were measured at a temperature of 553 K, and at H₂ and CO partial pressures of 0.67 and 0.33 atm, respectively. With the addition of small amounts of TiOₓ to the clean Rh surface, a sharp rise in reaction rate is noted. At the maximum corresponding to 0.15 ML [0.50 ML on the corrected scale (9)], a threefold
increase in the rate is observed. Beyond this coverage, the rate decreases monotonically.

Titania promotion also alters the selectivity of Rh, as may be seen in Fig. 6. The methane content of the hydrocarbon product falls from a value of 94% when no titania is present to nearly 60% for a titania coverage of 0.20 ML [0.66 ML on the corrected scale (9)]. Ethylene and propylene are the predominant higher hydrocarbon species, comprising roughly 34 mol% of the total hydrocarbon product. At higher titania coverages, the selectivities return to values more characteristic of clean Rh.

XPS characterization of TiO$_x$/Rh samples after their exposure to synthesis gas under reaction conditions showed that a significant fraction of the titanium ions were still in the Ti$^{3+}$ state. A summary of these observations is given in Table 1. It is evident that sample pretreatment has only a moderate effect on the oxidation state of Ti in the TiO$_x$ overlayer. It would thus appear that during reaction the oxidation state of Ti adjusts to reflect the composition of the gaseous environment. This conclusion concurs with the observation that prereduction of TiO$_2$-supported and TiO$_2$-promoted metal catalysts does not significantly change the activity of these catalysts for CO hydrogenation (13-16).

The enhancement in CO hydrogenation activity of Rh is ascribed to the presence of Ti$^{3+}$ sites at the perimeter of TiO$_x$ islands. It is proposed that these sites interact with the oxygen in CO chemisorbed on nearby Rh atoms and assist in the dissociation of CO. Since the dissociation of CO is believed to be the rate-limiting step in this reaction, the participation of Ti$^{3+}$ in this step leads to a higher activity. The dependence of the methanation rate on TiO$_x$ coverage, seen in Fig. 5, is attributable to the variation in the concentration of Ti$^{3+}$ centers with TiO$_x$ coverage.

The effects of titania deposits on the hydrogenolysis of ethane are quite
different from those for the hydrogenation of CO. Ethane hydrogenolysis was carried out at 450 K with 25 torr ethane and 25 torr hydrogen. The rate of hydrogenolysis was found to decrease monotonically with increasing titania coverage, the curve exhibiting a shape nearly identical to that observed for CO chemisorption. The presence of titania on the Rh surface was found to have no effect on the activation energy for the reaction. Taken together, these results suggest that hydrogenolysis can occur only on those Rh sites not affected by titania islands.

Conclusions

Submonolayer deposits of titania grow on the surface of Rh in the form of two-dimensional islands until a coverage of nearly a monolayer is achieved, at which point some three-dimensional growth of the islands is observed. The titania islands exclude CO chemisorption on Rh sites covered by the titania. The Ti$^{4+}$ ions in the overlayer are readily reduced to Ti$^{3+}$. This process begins at the perimeter of the islands and extends inwards as reduction proceeds. Titania promotion of Rh enhances the rate of CO hydrogenation by up to a factor of three and increases the selectivity to C$_2^+$ hydrocarbons. By contrast, the activity of Rh for the hydrogenolysis of ethane decreases monotonically with increasing titania promotion.

Acknowledgment

This work was supported by the Division of Materials Sciences, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC03-76SF00098.

References

Table 1

Percentage of Ti$^{3+}$ Following CO Hydrogenation

<table>
<thead>
<tr>
<th>θ_{TlO}</th>
<th>After CO Titration</th>
<th>After H_2 Reduction</th>
<th>After CO Hydrogenation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.22</td>
<td>--</td>
<td>0.15</td>
</tr>
<tr>
<td>0.50</td>
<td>--</td>
<td>0.62</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1 Rh ISS intensity versus titania evaporation time. The substrate is a Rh(111) surface.

Fig. 2 Rh AES intensity versus titania evaporation time. The substrate is a Rh(111) surface.

Fig. 3 CO chemisorption capacity versus titania coverage. The substrate is a Rh(111) surface.

Fig. 4 XPS spectra of the Ti(2p) region for 0.50 ML of TiO\textsubscript{x} on a Rh foil. Spectra 1, 2, 3, and 4 were observed after oxidation, CO titration, H\textsubscript{2} reduction, and reoxidation, respectively.

Fig. 5 Methanation rate on TiO\textsubscript{x}/Rh foil as a function of TiO\textsubscript{x} coverage. Reaction conditions were 553 K, 1 atm total pressure, and a H\textsubscript{2}:CO ratio of 2:1 (12). The indicated TiO\textsubscript{x} coverages should be multiplied by a factor of 3.3 to account for the corrections recently reported by Williams et al. (9).

Fig. 6 Hydrocarbon product selectivity as a function of TiO\textsubscript{x} coverage on a Rh foil (12). The indicated TiO\textsubscript{x} coverages should be multiplied by a factor of 3.3 to account for the corrections recently reported by Williams et al. (9).
Relative Rh ISS Intensity vs. Titania Deposition Time (s)

Fig. 1
Fig. 2

Relative Rh AES Intensity vs. Titania Deposition Time (s)
Fig. 3

Relative CO Capacity vs. Titania Coverage (ML)

1.0 1.2

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Titania Coverage (ML)
Fig. 4
$\text{T} = 553 \text{ K}$
$P = 1 \text{ atm}$
$H_2:CO = 2.1$

$R_{\text{CH}_4} \times 10^{11}$

θ_{TiO_x}

Fig. 5
Fig. 6