Title
An Overview of CENS Contaminant Transport Observation and Management Research

Permalink
https://escholarship.org/uc/item/9mj6b80x

Authors
Harmon, Thomas
Jay, Jenny
Saez, Jose
et al.

Publication Date
2009-05-12
An Overview of CENS Contaminant Transport Observation and Management Research

Thomas C. Harmon1, Jason C. Fisher, Yeonjeong Park, Alexander A. Ratko, Sandra Villanizan Amaya, Henry Pai, Christopher A. Butler, Patrick Barnes, William J. Kaiser2, Thanos Stathopoulos, Jennifer Jay3, Chu-Ching Lin, Nithya Ramanathan, Kelly Havens, Tiffany Lin, Steve Margulis4, Che-Chuan Wu, Jose Saez4

1 School of Engineering, UC Merced; 2 Electrical Engineering, UCLA; 3 Civil & Environ. Engineering, UCLA; 4 Civil & Environ. Engineering, LMU

Introduction: An overview of contaminant assessment and management research projects

Overview of Projects

- Multi-scale embedded networked sensing: Mobile platforms: Rapidly Deployable Networked Infomechanical System (NIMS RD)
- Temperature
- Soil moisture, and local meteorological conditions to a local habitat and organism behavior in and around a vernal pond at the Blue Oak Ranch Reserve. Pressure transducers, and soil moisture sensors track the drawdown of the local water table. eKo (Crossbow®) wireless loggers relay matric potential, soil moisture, and local meteorological conditions to a local

Technologies

- Multi-scale embedded networked sensing: Mobile platforms: Rapidly Deployable Networked Infomechanical System (NIMS RD)
- Technology for observing spatiotemporal hydraulic and chemical properties across stream channels.
- Static platform: Javelin Array
- Erosion in-river (inputs from tributaries, canals) and sub-river (hyporheic zone) observations.
- Static platform: Soil Pylon Array
- The soil pylon is a vertical array of soil sensors used to delineate mass and energy fluxes in subsurface systems.

Description: Observational strategies for soil, groundwater, and riparian systems

The contaminant assessment and management (or “Contam”) research area focuses on developing and implementing embedded networked sensing (ENS) technology to support this new observational strategy in the context of mass and energy distributions and fluxes across a range of temporal and synoptic scales. The specific areas of interest for Contam include soils, groundwater, and riparian systems. The Contam application domain is unique relative to the other three CENS applications in that it is often concerned with enabling adaptive management of environmental problems through engineered responses triggered by ENS observations. Example applications include improving our understanding of river metabolism in relation to adjacent and upstream land management practices, creating closed-loop feedback-control systems for conserving irrigation water and avoiding excessive nitrogen application in agricultural systems, delineating nutrient fluxes between groundwater and surface water, and rapid identification of coastal pollutants.

Proposed Solution: Implementing embedded networked sensing technology

River Mixing Dynamics and Mass Balances

- Data collected during the San Joaquin River NIMS RD deployment: Bathymetry and DEM map (left) and velocity (right) distributions are shown for upstream and downstream transects at the San Joaquin - Merced confluence.

Closed-loop Soil Moisture and Nutrient Cycling

- (left) Closed-loop salinity feedback irrigation control test bed experimental setup Sensors record moisture, salinity, and temperature within the soil profile. A micro-climate station provides data on current climatic conditions. (right) Response of embedded nitrate and ammonium inside a saturated soil column at various flow rates.

Diurnal Redox Cycle Effects on Arsenic Mobilization

- (above) Lab microcosm experiments to determine diurnal cycling effects on Arsenic mobilization in native (Bangladesh) soils.
- (right) Results of mobilization of iron and Arsenic after purging of anoxic gas showing redox changes may lead to As partitioning from solid to aqueous phase.

Quantifying Groundwater Fluxes into the Merced River

- (right) Results of vertical groundwater discharge velocities measured at three depths below the streambed and over a three month deployment at the Merced River. Diurnal groundwater discharge cycles during variable and steady-state river conditions are highlighted.
- (left) Conceptual depiction of Temperature Javelins used to quantify groundwater fluxes into rivers through the use of heat as a tracer. Integrated sampling cups and iButton self logging thermistors are highlighted.

Super-resolution scanning of flow and water quality using the NIMS RD system within the San Joaquin River mixing system.