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Abstract

We consider an individual-based model for fish school-
ing which incorporates a tendency for each fish to align its
position and orientation with an appropriate average of its
neighbors’ positions and orientations, plus a tendency for
each fish to avoid collisions. To accurately determine sta-
tistical properties of the collective motion of fish whose dy-
namics are described by such a model, many realizations
are typically required. This carries a very high computa-
tional cost. The current generation of graphics processing
units is well-suited to this task. We describe our implemen-
tation, and present computational experiments illustrating
the power of this technology for this important and chal-
lenging class of problems.

1. Introduction

Many organisms display ordered collective motion [1],
such as geese flying in a Chevron-shaped formation [5],
wildebeests herding on the Serengeti plains of Africa [15],
locusts swarming in sub-Saharan Africa [16], and fish

schooling [13]. The number of individuals involved in such
collective motion can be huge, from several hundred thou-
sand wildebeests to millions of Atlantic cod off the New-
foundland coast. Despite these large numbers, the group
can seem to move as a single organism, with all individ-
uals responding very rapidly to their neighbors to main-
tain the collective motion. Advantages of collective mo-
tion include a reduction in predation [10, 4], increased har-
vesting efficiency [8, 13], and improved aerodynamic effi-
ciency [17, 9].

The mathematical study of biological collective motion
has proceeded, broadly speaking, on two fronts. First, one
can model each organism individually, with rules specifying
its dynamics and interactions with other organisms. Such
“individual-based models” can incorporate experimental
observations of the behavior of the organisms, thereby giv-
ing biologically realistic models. On the other hand, one can
define “continuum models” to describe the dynamics of the
population; for example, one might study a model for the
evolution of the density of the organisms. However, avail-
able continuum models are often qualitative caricatures that
cannot capture all of the details which can be included in
individual-based models, thereby compromising biological



realism.
In this paper, we consider an individual-based model for

fish schooling. This model incorporates a tendency for each
fish to align its position and orientation with an appropri-
ate average of its neighbors’ positions and orientations, plus
a tendency for each fish to avoid collisions. Furthermore,
stochasticity is included in the model to account for imper-
fections in the gathering of information and in acting on
this information. To accurately determine statistical prop-
erties of the collective motion of fish whose dynamics are
described by such an individual-based model, many real-
izations are typically required; see, e.g., [3]. This can entail
a very large amount of computation. After describing the
model in more detail, we will describe how a Graphics Pro-
cessor Unit (GPU) can be used to very efficiently carry out
parallel simulations of this model.

2 Fish Schooling Model

We consider a two-dimensional individual-based model
for schooling with local behavioral interactions. This model
is similar to that of [2], but without an informed leader,
and with different weights of orientation and attraction re-
sponse. Groups are composed ofN individuals with posi-
tionsci(t), unit directionŝvi(t), constant speeds, and max-
imum turning rateθ. At every time step of sizeτ , indi-
viduals simultaneously determine a new direction of travel
by considering neighbors within two behavioral zones. The
first zone, often referred to as the “zone of repulsion” [3],
is represented by a circle of radiusrr about the individual.
Individuals repel from neighbors that are within this zone,
which typically has a radius of one body length. The sec-
ond zone is represented by an annulus of inner radiusrr and
outer radiusrp about the individual. This zone also includes
a blind area, defined as a circular sector with central angle
(2π − η), for which neighbors within the zone are unde-
tectable. Individuals orient with and are attracted towards
neighbors within this second zone.

These zones are used to define behavioral rules of mo-
tion. First, if individual i finds agents within its zone of
repulsion, then it orients its direction away from the aver-
age relative directions of those within its zone of repulsion.
Its desired direction of travel in the next time step is given
by

vi(t + τ) = −
∑

j 6=i

cj(t) − ci(t)

|cj(t) − ci(t)|
. (1)

This vector is normalized aŝvi(t+τ) = vi(t+τ)
|vi(t+τ)| , assuming

vi(t + τ) 6= 0. In the case thatvi(t + τ) = 0, agenti main-
tains its previous direction of travel as its desired direction
of travel, givingv̂i(t + τ) = v̂i(t).

If agents are not found within individuali’s zone of re-
pulsion, then it will align with (by averaging the directions

of travel of itself and its neighbors) and feel an attraction
towards (by orienting itself towards the average relative di-
rections of) agents within the second zone. The desired di-
rection of agenti is given by the weighted sum of these two
terms:

vi(t + τ) = ωa

∑

j 6=i

cj(t) − ci(t)

|cj(t) − ci(t)|
+ ωo

∑

j

vj(t)

|vj(t)|
, (2)

whereωa andωo are the weights of attraction and align-
ment, respectively. This vector is then normalized asv̂i(t +

τ) = vi(t+τ)
|vi(t+τ)| , assumingvi(t + τ) 6= 0. As before, if

vi(t + τ) = 0, then agenti maintains its previous direction
of travel.

We denoter = ωo/ωa as the ratio of orientation and
alignment tendencies. Whenr = 0 (ωo = 0), individu-
als have no desire to orient with their neighbors. Asr ap-
proaches 1, individuals balance their orientation and attrac-
tion preferences. Forr > 1, individuals are more interested
in orientation with their neighbors than attraction towards
them.

Stochastic effects are incorporated into the model by ro-
tating agenti’s desired direction̂vi(t+τ) by an angle drawn
from a circularly wrapped normal distribution with mean0
and standard deviationσ. Also, since individuals can only
turn θτ radians in one time step, if the angle betweenv̂i(t)
andv̂i(t + τ) is greater thanθτ , individuals do not achieve
their desired direction, and instead rotateθτ towards it. Fi-
nally, each agent’s position is updated simultaneously as

ci(t + τ) = ci(t) + sv̂i(t + τ)τ. (3)

3 The Graphics Processor Unit - A New Data
Parallel Computing Device

3.1 Modern Graphics Processor Unit

The general-purpose Graphics Processing Unit (GPU) is
becoming a viable option for many parallel programming
applications. The GPU has a highly parallel structure with
high memory bandwidth and more transistors devoted to
data processing than to data caching and flow control, com-
pared with a CPU architecture, as shown in Figure 1 [11].
Problems that can be implemented with stream processing
and using limited memory are well-suited to the GPU archi-
tecture. Single Instruction Multiple Data (SIMD) computa-
tion, which involves a large number of totally independent
records being processed by the same sequence of operations
simultaneously, is ideal for GPU application. We will show
how our computation can be structured to fit within the con-
straints of the GPU architecture.
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Figure 1. CPU vs. GPU architecture. There
are more transistors devoted to data process-
ing rather than to data caching and flow con-
trol for the GPU, compared with the CPU.

3.2 NVIDIA 8 Series GeForce-based GPU
Architecture

The NVIDIA 8800 GTX chip, released at the end of
2006, has 768MB RAM and 681 million transistors on a
480mm2 surface area. There are 128 stream processors on
a GeForce 8800 GTX chip, divided into 16 clusters of mul-
tiprocessors with 8 streaming processors in each multipro-
cessor as shown in Figure 2 [11]. The 8 processors in each
multiprocessor share 16 KB shared memory which brings
data closer to the Arithmetic Logic Unit (ALU). The peak
computation rate accessible for general-purpose application
is (16 multiprocessors× 8 processors / multiprocessor)×
(2 flops / MAD 1) × (1 MAD / processor-cycle)× 1.35
GHz = 345.6 GFLOP/s, since the processors are clocked
at 1.35 GHz with dual processing of scalar operations sup-
ported. The maximum observed bandwidth between system
and device memory is about 2GB/second.

Unfortunately, current GPU chips support only single-
precision floating point, while current CPUs support 64-bit
technology. Additionally, there is only 16K of fast read and
write on-chip memory shared between the eight processors,
on each multiprocessor.

3.3 CUDA: Compute Unified Device Ar-
chitecture

The Compute Unified Device Architecture (CUDA)
Software Development Kit (SDK) supplies general purpose
functionality for non-graphics applications on the NVIDIA
GPU. The CUDA provides an essential high-level develop-
ment environment with standard C language, which results
in a minimal learning curve for beginners to access the low-
level hardware. For development flexibility, the CUDA pro-
vides both scatter and gather memory operations. It also
supports a fast read and write shared memory [11].

Following the data-parallel model, the structure of
CUDA computation allows each of the processors to exe-
cute the same instruction sequence on different sets of data

1A MAD is a multiply-add.

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Figure 2. Hardware Model : a set of SIMD mul-
tiprocessors with on-chip shared memory.

in parallel. The data can be broken into a 1D or 2D grid of
thread blocks. Each block can be specified as a 1D, 2D or
3D array of threads which collaborate via the shared mem-
ory. Up to 512 threads can be active.

Currently the CPU and GPU cannot run in parallel. Also
it is not possible to execute multiple kernels at the same time
through the CUDA, or to download data and run a kernel in
parallel. Users can branch in the kernel based on the thread
id to achieve multiple tasks on a single kernel, but the sim-
ulation will be slowed down with such branches. Individual
GPU program launches can run at most 5 seconds on a GPU
with a display attached.

4. Parallel Simulation

To accurately determine statistical properties of the col-
lective motion of fish, many realizations are typically re-
quired for a given set of parameters. This can be very com-
putationally intensive. There are essentially two ways to
improve the performance: parallelize the simulation across
the realizations, and parallelize the simulation within one
realization. We do both.

4.1 Random Number Generation

To generate the initial conditions and to add noise to
our calculations at each time step, we need many uniformly
distributed random numbers. So that our statistical results



can be trusted, it is particularly important that these ran-
dom numbers are independent. Generating independent se-
quences of random numbers is one of the most important
issues of implementing simulations for ensembles of fish
schooling models in parallel.

Originally we considered pre-generating a sequence of
uniform random numbers in the CPU. Since the CPU and
GPU can’t run in parallel, we can pre-generate a huge num-
ber of random numbers and store them in the shared mem-
ory, and swap back to the CPU to generate more when
they are used up. Alternatively, we could pre-generate a
huge number of random numbers and store them in the
global memory. These methods spend too much time on
data access. Furthermore, the Scalable Parallel Random
Number Generators Library (SPRNG) [6, 7], which might
have been an ideal choice because of its excellent statis-
tical properties, cannot be moved to the GPU efficiently
due to its complicated data structure. The only solution
appears to be to employ a simple random number gener-
ator on the GPU. Experts suggest using a mature random
number generator instead of inventing a new one, since it
requires great care and extensive testing to evaluate a ran-
dom number generator[14]. Thus we chose the Mersenne
Twister from the literature in our application [12], which
has passed many statistical randomness tests [12] includ-
ing the stringent Diehard tests. In our implementation, we
modified Eric Mills’ multithreaded C implementation [12].
Since many random numbers are required by this model,
we use the shared memory for random number generation
to minimize the data launching and accessing time.

4.2 Parallelizing Across the Realizations

Parallelizing the independent realizations is an effective
way to improve the performance. Ensembles of fish school-
ing runs are very well-suited for implementation on the
GPU through the CUDA.

The whole fish schooling simulation can be put into
a single kernel running in parallel on a large set of sys-
tem state vectorsPxi(j), Pyi(j), V xi(j), V yi(j), respec-
tively representing thex and y components of the posi-
tions of the fish and thex andy components of the veloc-
ities of the fish, wherei is the block id andj is id of the
fish. The initial conditionsPxi(0), Pyi(0), V xi(0), V yi(0)
are randomly generated by different processors within
each multiprocessor. The large set of final state vectors
Pxi(tf ), Pyi(tf ), V xi(tf ), V yi(tf ) will contain the de-
sired results. We minimize the transfer between the host
and the device by using an intermediate data structure on
the device, and batch a few small transfers into a big trans-
fer to reduce the overhead for each transfer.

4.3 Parallelizing Within One Realization

Before discussing parallelism within one realization, we
outline the sequential algorithm. Individual fish are initial-
ized in a bounded region with randomized positions and di-
rections of travel. Then the simulation is executed for 3000
steps to reach a steady state. At each step, we calculate
the influence on each fish from all the other fish. To calcu-
late the influence on a fish, we compute the distance from
this “goal fish” to all the other fish and record the influence
coming from the different zones in a few variables. Next
we compute the net influences for this “goal fish”, includ-
ing the noise term, based on the above data and save them
to an influence array. After computing all the influences for
all the fish, we update the position and direction of each fish
based on the influence array of this step.

For the GPU, there are some restrictions on the number
of threads in each block and the total number of fish stored
in the shared memory. The device has very limited shared
memory in each multiprocessor but relatively large global
memory. The global memory adjacent to the GPU chip has
much higher latency and lower bandwidth than the on-chip
shared memory: it takes about 400-600 clock cycles to read
or write the global memory vs. 4 clock cycles to access the
shared memory. To effectively use the GPU, our simulation
makes as much use of on-chip shared memory as possible.
Although it is better to have at least 128 threads for the best
efficiency, we have to take the limited shared memory size
into account.

The main goal of parallelizing within one realization is
to decompose the problem domain into smaller subdomains.
In our implementation, within each blocki, the system state
vector Pxi(j), Pyi(j), V xi(j), V yi(j) is divided among
threads. Assume that we haveN fish and we usen threads
to do the simulation. Then we need order ofm = N/n
time to calculate the influences on each of the fish. In the
parallel implementation, we initialize all the fish with ran-
dom position and direction. At each step we loadn fish by
loading one fish in each thread. The system state loaded to
shared memory at this stage are the “goal fish”. Each thread
holds only one “goal fish” at a time and calculates the in-
fluences on this “goal fish”. Thus during one step, each
thread processes onem-element subvector. To calculate the
distance from the “goal fish” to all the other fish, we need
the position and direction of all the other fish. By using a
temporary array of sizen in shared memory, we loadn fish
at a time, with each thread loading one fish. The program
will keep loading until all the desired data have been loaded
and used for calculation for the goal fish. Then each thread
will compute the influence information for the goal fish of
this thread. At the end of the simulation step, each thread
writes the results into its own influence subvector. After all
the influence calculations are finished, each thread updates
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Figure 3. Memory layout of fish schooling model. There are N threads to simulate one realization
with thread id tid to identify the thread. In process 1 each thread loads one fish as its “goal fish” from
the device memory to shared memory; In process 2 each thread loads fish to another array in shared
memory; In process 3 each thread uses the full data from proce ss 2 to compute the influences on its
own “goal fish”; Processes 2 and 3 continue until all of the influences to the “goal fish” have bee n
computed; In process 4 each thread saves its influence to the influence record array ( this reuses
the previous array to save shared memory); In process 5 each thread updates its “goal fish” to the
system state vector on the device.

its system state subvector by its influence subvector. The
memory layout of the whole process is shown in Figure 3.
Our implementation does not make use of a concurrent up-
date. During each calculation, each thread reads the full
system state vector. The concurrent reads to the same data
are supported by the hardware.

Within each realization, most calculations use the shared
memory, for which the memory access latency is small. In
addition to the parallelization within one realization, we
have many blocks doing independent realizations. When-
ever a thread is waiting to access the device memory, an-
other thread will be running on the ALUs. Hence the mem-
ory access latency is not a problem.

5 Results

Our simulations were run on the NVIDIA GeForce
8800GTX installed on a personal computer with Intel Pen-
tium 3.00GHz CPU and 3.50GB of RAM with physical Ad-
dress Extension.

To begin a simulation, individuals are placed in a
bounded region (so that each agent initially interacts withat
least one other agent), with random positions and directions

of travel. The parameters were fixed to berr = 1, rp = 7,
η = 350◦(≈ 6.1 radians),s = 1, τ = 0.2, σ = 0.01, and
θ = 115◦(≈ 2 radians). Simulations were run for approxi-
mately 3000 steps until they reached a steady state. Groups
of sizeN = 100 were explored for a range of ratiosr of
attraction to orientation weightings.

Two observables were used to measure the structure of
the schools: elongation and polarization [2]. Elongation
measures the ratio of the length of the axis aligned with
group motion to the axis perpendicular to group motion, and
polarization

P (t) =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

vi(t)

∣

∣

∣

∣

∣

measures the degree of group alignment. Both quantities
take values between 0 and 1. To obtain statistics regarding
the group structure for a given sizeN and ratior, 1120
realizations (with different initial conditions) were run. The
average group elongation and polarization were recorded,
as well as the probability of group fragmentation.

We were able to nicely resolve the group statistics as a
function of the ratio of attraction to alignment. We find that
for r close to zero, groups exhibit swarm behavior, with
small polarization and elongation near1. As r is increased,



groups become increasingly more aligned, forming elon-
gated dynamically parallel groups and then highly paral-
lel groups asr is further increased; see Figure 4. Thus,
by changing the proportion of attraction to alignment ten-
dencies, groups can shift between different collective be-
haviors. We also see that the probability of fragmenta-
tion first increases as the group elongation increases (from
1 < r < 2.5), then decreases as elongation decreases (from
3 < r < 8), and then increases again as schools become
more highly aligned; see Figure 5.

The simulation performance in generating these results
was extraordinary. The parallel (GPU) simulation is about
230 − 240 times faster than the corresponding sequential
simulation which was already optimized on the host com-
puter.

6 Conclusions

We considered an individual-based model for fish
schooling which incorporates a tendency for each fish to
align its position and orientation with an appropriate av-
erage of its neighbors’ positions and orientations, plus a
tendency for each fish to avoid collisions. Stochasticity is
included in the model to account for imperfections in the
gathering of information and in acting on this information.
For the problem of calculating collective motion statistical
measures from many realizations, we observed speedups of
230−240 times for our parallelized code running on a GPU
over the corresponding sequential simulation on the host
workstation. With this impressive performance improve-
ment, in one day we can generate data which would require
more than six months of computation with the sequential
code.

The usefulness of individual-based models of biologi-
cal systems, which can incorporate detailed experimental
observations of the behavior of the organisms, is limited
by the ability to simulate them in a reasonable amount of
time. By expoiting the power of general-purpose GPUs
as illustrated in this paper, we expect that it will be pos-
sible to simulate more detailed models with more agents for
longer times and over more realizations. This GPU com-
putational paradigm has the potential to revolutionize our
ability to understand how collective behavior at the macro-
scopic, population-level arises from the interaction of indi-
viduals with each other and their environment.
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Figure 4. Swarm ( r = 0.25), dynamic parallel
(r = 2), and highly parallel ( r = 16) collective
motion for N = 100 member schools.
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Figure 5. Statistics of group elongation (only
including non-fragmented schools), group
polarization (only including non-fragmented
schools), and probability of group fragmenta-
tion, for N = 100 member schools. To obtain
these statistics, for each value of r, 1120 sim-
ulations with different initial conditions were
run for 3000 time steps, each using the GPU.




