Lawrence Berkeley National Laboratory
Recent Work

Title
ION-EXCHANGE BEHAVIOR OF MENDELSVIUM

Permalink
https://escholarship.org/uc/item/9mw7s8t0

Authors
Gatti, M. Luis.
Phillips, Llad
Sikkeland, Torbjorn
et al.

Publication Date
1959
Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. 2-7405-eng-48

ION-EXCHANGE BEHAVIOR OF MENDELEVIUM
Raymond C. Gatti, Llad Phillips, Torbjorn Sikkeland,
M. Luis Muga, and Stanley G. Thompson

January 1959

Printed for the U. S. Atomic Energy Commission
ION-EXCHANGE BEHAVIOR OF MENDELEVIUM

Raymond C. Gatti, Llad Phillips, Torbjorn Sikkeland,* M. Luis Muga, and Stanley G. Thompson

Lawrence Radiation Laboratory
University of California
Berkeley, California

January 1959

During the course of experimentation to produce new isotopes of mendelevium (element 101), the elution position of this element from cation-exchange resin columns was determined relative to the elution peaks of actinide and lanthanide elements. Mendelevium-256 was prepared by a recoil technique similar to that reported in the discovery of element 101.1

An einsteinium-253 target (containing 2×10^{11} atoms electroplated on a 0.07-cm2 area) was bombarded with 29-Mev helium ions in the 60-inch cyclotron at the Crocker Radiation Laboratory and the transmuted recoil nuclei were caught on a 0.1-mil-thick gold "catcher" foil placed adjacent to the target. With beam intensities of 2.5 microamperes, as many as one hundred atoms of Mv256 could be produced per experiment.

At the end of bombardment, the gold foil was quickly dissolved in aqua regia containing actinide and lanthanide tracers to serve for internal calibration of the resin columns. The active fraction was separated from the gold by sorbing the latter on a Dowex A-1x10 anion resin column from a 2 M HCl solution. The drops containing the actinide fraction were evaporated to dryness; the residue was dissolved in 0.05 M HCl and transferred to a 5 cm x 2 mm Dowex-50x12 cation resin column. After washing with two drops of water, the activities were eluted in sequence with 0.23 M ammonium α-hydroxy isobutyrate solution (pH = 4.62) at 87°C. The eluant was caught on platinum counting discs (one drop per plate per minute, 13 microliters per drop), evaporated to dryness, and the plates were flamed and then counted individually for fission, alpha, and beta activity. A typical elution curve is shown in Fig. 1.

The fission activity in the fermium fraction decayed with the 160-min half-life characteristic of Fm256.

* On leave from J.E.N.E.R., Norway.
In the mendelevium fraction, \(\text{Mv}^{256} \) was identified by observation of its electron-capture-decay daughter, \(\text{Fm}^{256} \), as follows. The mendelevium fraction was passed through a second cation resin column, thus separating it into new mendelevium and fermium components. The new fermium fraction decayed by fission with a half-life of 160 min, and fission activity was observed to grow into the new mendelevium fraction. It was concluded that during the time between column separations, \(\text{Mv}^{256} \) decayed by orbital electron capture to its daughter \(\text{Fm}^{256} \).

To facilitate comparison, the elution positions are discussed in terms of the separation factor, \(S \), relative to curium,

\[
S = \frac{V_x - C}{V_{\text{cm}} - C},
\]

where \(V_x \) is the volume eluted when the concentration of \(x \) in the eluate is greatest, \(V_{\text{cm}} \) is the volume eluted when the concentration of \(\text{Cm} \) in the eluate is a maximum, and \(C \) is the free column volume.

In Table I are listed the measured separation factors\(^3\)\(^4\)\(^5\) of the lanthanide and actinide elements, relative to curium.

In Fig. 2, a plot of the separation factor vs the atomic number \(Z \), it may be noted that the separation factor of 0.050±0.005 for mendelevium corresponds to that expected for ekathulium, supporting again the actinide hypothesis. The actinide line may be extrapolated to predict a separation factor of 0.036±0.008 for element 102.

The authors wish to acknowledge with gratitude the tireless efforts during these experiments of the operating crew of the Crocker Laboratory 60-inch cyclotron, and are indebted to Thomas C. Parsons and Francis McCarthy for their aid during the early phase of these experiments.
Table I

Separation factors (relative to curium)
for ammonium α-hydroxyisobutyrate eluant

<table>
<thead>
<tr>
<th>Element</th>
<th>Separation factors</th>
<th>Element</th>
<th>Separation factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>0.038±0.008<sup>a</sup></td>
<td>Lu</td>
<td>0.016</td>
</tr>
<tr>
<td>Lv</td>
<td>0.050±0.005</td>
<td>Yb</td>
<td>0.022</td>
</tr>
<tr>
<td>Fm</td>
<td>0.069</td>
<td>Tm</td>
<td>0.029</td>
</tr>
<tr>
<td>E</td>
<td>0.13</td>
<td>Er</td>
<td>0.038</td>
</tr>
<tr>
<td>Cf</td>
<td>0.20</td>
<td>Ho</td>
<td>0.046</td>
</tr>
<tr>
<td>Bk</td>
<td>0.45</td>
<td>Dy</td>
<td>0.075</td>
</tr>
<tr>
<td>Cm</td>
<td>1.00</td>
<td>Tb</td>
<td>0.14</td>
</tr>
<tr>
<td>Am</td>
<td>1.45</td>
<td>Gd</td>
<td>0.29</td>
</tr>
<tr>
<td>Y</td>
<td>0.06<sup>a</sup></td>
<td>Eu</td>
<td>0.41</td>
</tr>
</tbody>
</table>

^aPredicted value.
REFERENCES

The image shows a graph with the following labels:

- α counts
- β counts
- Fission counts

The graph is labeled with the following elements:

- Tm
- Mv Y Fm
- E
- Cf

The x-axis represents the Elution drop number, ranging from 0 to 80.

The y-axis represents the α c/m or fission events, ranging from 0 to 26.

The β c/m axis ranges from 8000 to 56000.

Key points include:

- The graph is designated by histogram.
Actinides: 95
Lanthanides: 63 65 67 69 71

Atomic number

Separation factor relative to curium

MU-16587
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.