Title
ETA PRODUCTION IN THE REACTION $n p \rightarrow np n$ AT 1170 AND 1050 MeV/c

Permalink
https://escholarship.org/uc/item/9n38p4fp

Author
Grossman, Ronald Allen.

Publication Date
1968-03-04
University of California

Ernest O. Lawrence Radiation Laboratory

ETA PRODUCTION IN THE REACTION $\pi p \rightarrow \pi p \eta$
AT 1170 AND 1050 MeV/c

Ronald Allen Grossman
(Ph. D. Thesis)

March 4, 1968
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ETTA PRODUCTION IN THE REACTION $\pi p \rightarrow \pi p \eta$
AT 1170 AND 1050 MeV/c

Ronald Allen Grossman
(Ph. D. Thesis)

March 4, 1968
ETA PRODUCTION IN THE REACTION $\pi p \rightarrow \pi p \eta$
AT 1170 AND 1050 MEV/C

Contents

Abstract ... v
I. Introduction 1
II. Experimental Details 3
III. Cross Sections 6
IV. The Experimental Distributions 7
 A. The Coordinate System. 7
 B. Mass and Angular Distributions 9
V. The Parameterization 12
 A. The Method of Moments 13
 B. The π^+ Data 16
 1. Determination of the $I=3/2$ Amplitudes 16
 2. Determination of the Values of the Magnitudes and Phases of the Complex Amplitudes 17
 3. Comparison of the π^+ Data with the Results of the Fit. 20
 C. Other Experiments Involving the Reaction $\pi^+ p \rightarrow \pi^+ p \eta$ 22
 D. The π^- Data 24

-iv-

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. The $N^*(1550) \rightarrow np$ Resonance</td>
<td>28</td>
</tr>
<tr>
<td>VI. Summary</td>
<td>32</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>33</td>
</tr>
<tr>
<td>Appendices</td>
<td>34</td>
</tr>
<tr>
<td>A. Derivation of the Matrix Element</td>
<td>34</td>
</tr>
<tr>
<td>B. Inclusion of the $N^*(1550) \rightarrow np$ Resonance Amplitudes in the Matrix Element</td>
<td>39</td>
</tr>
<tr>
<td>Footnotes and References</td>
<td>45</td>
</tr>
<tr>
<td>Tables</td>
<td>51</td>
</tr>
<tr>
<td>Figures</td>
<td>61</td>
</tr>
<tr>
<td>Figure Captions</td>
<td>86</td>
</tr>
</tbody>
</table>
ETA PRODUCTION IN THE REACTION \(\pi p \to \pi p\eta \)

AT 1170 AND 1050 MeV/c

Ronald Allen Grossman

Lawrence Radiation Laboratory
University of California
Berkeley, California

March 4, 1968

ABSTRACT

We have investigated eta production in the reaction \(\pi^+ p \to \pi^+ p\eta \)
at 1050 and 1170 MeV/c, and in the reaction \(\pi^- p \to \pi^- p\eta \) at 1170 MeV/c. We
obtain the following partial cross sections for the reaction \(\pi^+_p \to \pi^+_p\eta \)
followed by the charged decay \(\eta \to \pi^+ \pi^- \pi^0 \): \((9.5 \pm 1.5) \mu b \) for
1050 MeV/c incident \(\pi^+ \); \((53.3 \pm 5.0) \mu b \) for 1170 MeV/c \(\pi^+ \); \((15.9 \pm 1.9) \mu b \)
for 1170 MeV/c \(\pi^- \). From our \(\pi^+ \) data we find that we need four \(I = 3/2 \) amplitudes
in order to obtain good agreement with our mass and angular distributions and to reproduce the threshold behavior of the cross section. We find the dominating amplitude to be that representing the reaction, \(\pi^+ p \to \eta \Delta(1238); \Delta(1238) \to \pi^+ p \), where the \(\eta \) and the \(\Delta(1238) \) are produced in s-wave. The four amplitudes are extrapolated to higher energies where the predicted mass and angular distributions and cross sections are compared with the available data. From our \(\pi^- \) data we find that in addition to the four \(I = 3/2 \) amplitudes (determined from the \(\pi^+ \) data), one \(I = 1/2 \) amplitude is required: the amplitude in which all particles are in relative S-states. We find that this \(I = 1/2 \) amplitude in fact dominates the \(\pi^- \) reaction. We see no evidence for production of the \(N^*(1550) \to \eta p \) resonance.
I. INTRODUCTION

Since the discovery of the eta meson in 1961, there have been several experiments at various energies involving the reaction,
\[\pi^+ p \rightarrow \pi^+ p \eta. \]
In all of these experiments the reaction appears to proceed mainly via
\[\pi p \rightarrow \eta \Delta(1238) \]
\[\Delta(1238) \rightarrow \pi p. \]

There have also been several experiments involving the reaction
\[\pi^- p \rightarrow \pi^- p \eta. \]

Reaction (1) is unusual in that there are no pseudoscalar or vector mesons which can be exchanged in the t-channel. Therefore, such models as the one pion exchange model or the vector exchange model of Stodolsky and Sakurai do not apply to reaction (1). As can be seen from the figure below,

![Diagram](image)

the required quantum numbers for the exchange particle are \(I^G = 1^- \) and \(J^P = 0^+, 1^-, 2^+, \ldots \). Mesons with these quantum numbers are the massive \(A_2 (1300) \), \(J^P = 2^+ \) and \(\pi_V (1016) \), \(J^P = 0^+ \).

The \(A_2 \) meson is well established and the quantum numbers are now fairly agreed upon. (There is some evidence, however, that there might be more than one meson in this region.\(^\text{12}\)) The compiled branching ratio for \(A_2 \) decay into \(\eta \pi \) is listed\(^\text{13}\) as \(11 \pm 2 \% \), indicating that the coupling constant at the upper vertex is small.
The other meson candidate for the exchange particle, $\pi^+_V(1016)^{13}$, is seen as a $\bar{K}K$ enhancement near threshold and may be interpreted as due to a large scattering length. A reported $\pi\pi$ enhancement14 in this region has not been confirmed.

In addition to meson exchange in the t-channel it is also possible to have baryon exchange in the u-channel. This would tend to peak the backward region of the production angular distribution. For baryon exchange the nucleon and the $N^*(1520), S_{11}$, resonance have the required quantum numbers.

The fact that the masses of all the proposed exchange particles are large has the consequence that the interaction is of shorter range than interactions to which the peripheral model is usually applied. It is not surprising, therefore, that experiments involving reaction (1) are not highly peripheral; that is, the production angular distributions do not exhibit the great forward peaking characteristic of peripheral interactions. In fact in the low energy data of Foelsche and Kraybill2 and of this experiment the production angular distributions are fairly flat.

We also note that the reaction $\pi p \rightarrow \pi p\eta$ might proceed via

$$\pi p \rightarrow \pi N^*(1550)$$

$$N^*(1550) \rightarrow \pi p.$$

However, this N^* resonance has yet to be seen as an enhancement in the $(\eta-N)$ mass distribution in a reaction involving a final state of three or more particles.

In this paper we adopt the phenomenological approach of describing the production process of the reaction $\pi p \rightarrow \pi p\eta$ in terms of low partial waves. We find that our π^+ data at 1050 and 1170 MeV/c may be adequately represented by s-wave production of the eta and $\Delta(1238)$, plus
an admixture in which the eta is produced in s- or p-wave and the \(\pi^+ \) and p are in a relative S-wave. At 1170 MeV/c we find the cross section ratio \[\sigma(\pi^- p \rightarrow \pi^- p\eta)/\sigma(\pi^+ p \rightarrow \pi^+ p\eta) \approx 0.30 \pm 0.04 \] instead of the value 0.11 expected (on the basis of Clebsch-Gordan factors) if the \(\pi^- p \) reaction proceeded only through the \(I = 3/2 \) amplitudes. This indicates that in addition to the \(I = 3/2 \) amplitudes there is also an appreciable \(I = 1/2 \) contribution. Our \(\pi^- \) data is adequately represented by the addition of only one \(I = 1/2 \) amplitude; the amplitude in which all particles are in relative S-states.

II. EXPERIMENTAL DETAILS

The Alvarez 72-inch liquid hydrogen bubble chamber was exposed to beams of both \(\pi^+ \) and \(\pi^- \) mesons at a momentum of 1170 MeV/c and to \(\pi^+ \) mesons at a momentum of 1050 MeV/c. The beam setup has been described previously;\(^{15,16}\) we present here in Fig. 1 only a schematic diagram of the beam optics.

A total of 240,000 pictures were taken at the three momenta. The film was scanned for 4-prongs. A total of 11,000 4-prongs were found and fitted by the LRL spatial reconstruction and kinematical fitting program, SIOUX. Most of the events, 9000, fit the four-constrained reaction,

\[\pi^\pm p \rightarrow \pi^\pm p \pi^\pm \pi^- \quad (2) \]

with a chisquare less than 16. These events were discarded. The remaining 2000 events were then examined on the scanning table to determine the proton. Out of these 2000 events 800 fit reaction (2) with a chisquare between 16 and 35. For these events if the proton identification made on the scanning table agreed with the track identified as the proton in the \(4c \) fit of reaction (2), then the event
was discarded. In addition events identified on the scanning table as having Dalitz pairs and events identified as having four charged pions were also discarded.

The remaining events were retained if they fit the reaction

$$\pi^\pm p \to \pi^\pm p \pi^+ \pi^- \pi^0$$

or

$$\pi^\pm p \to \pi^\pm p \pi^+ \pi^- \gamma$$

with a one-constrained (1C) chisquare of less than 8.6 and if the events were inside the fiducial volume. These events were then fit to the two-vertex, two-constrained hypothesis

$$\pi^\pm p \to \pi^\pm p \eta$$

$$\eta \to \pi^+ \pi^- \pi^0$$

(3)

and

$$\pi^\pm p \to \pi^\pm p \eta$$

$$\eta \to \pi^+ \pi^- \gamma$$

(4)

An event was recorded as reaction (3) or (4) depending on which had the lower chisquare. Events fitting reaction (4) are not used. All but four of the events that fit $$\pi^\pm p \to \pi^\pm p \pi^+ \pi^- \pi^0$$ also fit the 2C reaction (3) with chisquares less than 20 and are regarded as good eta events. The four exceptions have chisquares over 200. Thus, essentially all events which fit the final state hypothesis, $$\pi p \pi^+ \pi^- \pi^0$$, come from etas. The number of events fitting reaction (3) are 135 for the 1170 MeV/c $$\pi^+$$ data, 51 for the 1050 MeV/c $$\pi^+$$ data, and 87 for the 1170 MeV/c $$\pi^-$$ data. The 2C2 distribution of these 273 events is given in Fig. 3.

There is still the problem of "ambiguous" events. Since there are two pions of the same charge in the final state, it is unknown which pion has come from the decay of the eta; thus reaction (3) can be fitted
two ways. When both fits are good (chisquare less than 20), the event is ambiguous. In this case the interpretation with the lower chisquare is taken to be the correct one. In the analysis which follows it is assumed that the right identification is always made. (By a Monte Carlo calculation we estimate that we choose the wrong pion about 3% of the time.)

Another possible way in which we could have obtained our final sample of events, \(\pi^+ p \rightarrow \pi^\pm p \eta; \eta \rightarrow \pi^+ \pi^- \pi^0 \), is to separate out the events with a missing \(\gamma \) ray by taking all events in which the mass of the missing neutral is greater than 0.010 BeV\(^2\) (see Fig. 2), and then plot the invariant mass of the \(\pi^+ \pi^- \pi^0 \). The resulting plots are shown in Fig. 4. Again, because of the pion ambiguity, there are two such combinations; only the one in which the invariant mass is closer to the eta mass has been plotted. It is seen in Fig. 4 that this procedure likewise results in nearly all events being etas.
III. CROSS SECTIONS

The measured cross sections for the reaction $\pi p \rightarrow \pi p\eta$, $\eta \rightarrow \pi^+\pi^-\pi^0$ for each of our three beams are given in Table I along with the pertinent scanning information.

As stated in Section II, an eta event is obtained by insisting that the 4C chisquare for "nothing missing" is greater than 35, that the 1C chisquare for missing π^0 or missing γ is less than 8.6 and that the 2C chisquare for eta decaying into $\pi^+\pi^-\pi^0$ is less than for the decay into $\pi^+\pi^-\gamma$. The last criterion introduces some misinterpretations if both chisquares are small. In order to obtain the efficiency of the above selection criteria, the Monte Carlo program, FAKE, was used to simulate events of type (3). The efficiency was found to be 91.5\%o. In addition events of type (4) were faked. It was found that the number of $\pi^+\pi^-\gamma$ eta decays contaminating our final sample is negligible (less than 0.8 events).

The partial cross sections obtained in this experiment for reaction (3) are listed in Table II along with the cross section values given in references (2-10). A plot of these values as a function of incident beam momentum is shown in Fig. 5. Note that the ratio $\sigma(\pi^-p \rightarrow \pi^-p\eta):\sigma(\pi^+p \rightarrow \pi^+p\eta)$ at 1170 MeV/c is $(15.9 \pm 1.9)/(53.3 \pm 5.0) = 0.30 \pm 0.04$. Were the π^-p reaction to proceed via $I=3/2$ amplitudes only, such as through the reaction $\pi^-p \rightarrow \eta\Delta(1238)$, the ratio would be $1/9 = 0.11$. Thus $I = 1/2$ amplitudes are important at 1170 MeV/c.
IV. THE EXPERIMENTAL DISTRIBUTIONS

A. The Coordinate System

In the analysis which follows we regard the reaction, $\pi^\pm p \rightarrow \pi^\pm p\eta$, as the two step process,

$$\pi^\pm p \rightarrow \eta \tilde{N},$$

followed by

$$\tilde{N} \rightarrow \pi^\pm p,$$

where we use the symbol \tilde{N}, to indicate a π-p state of total angular momentum J and orbital angular momentum L; thus when $J = 3/2$ and $L = 1$, \tilde{N} corresponds to the $\Delta(1238)$.

Figure 6 is a mnemonic diagram in velocity space depicting the two step process. The beam pion, π^\pm_B, and target proton, p_T, of orbital angular momentum, L, and linear momentum, k, in the overall center-of-mass of energy, E, produce an eta and a \tilde{N} of orbital angular momentum L, and linear momentum, p, in the overall center-of-mass. The \tilde{N} of total angular momentum, J, then decays with orbital angular momentum, L, and linear momentum, q, in the \tilde{N} rest frame. The total angular momentum of the system is J. The final state $\pi^\pm p\eta$ then consists of $I = 3/2$ states, $(L_L)_J$, and the final state $\pi^- p\eta$ consists of both $I = 3/2$ and $I = 1/2$ states, $(L_L)_J$. The notation is summarized in the following table.

<table>
<thead>
<tr>
<th>$\pi^\pm p\eta$</th>
<th>π^\pm_B, p_T</th>
<th>k</th>
<th>L</th>
<th>J</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial (overall center-of-mass)</td>
<td>η, \tilde{N}</td>
<td>p</td>
<td>L</td>
<td>J</td>
<td>E</td>
</tr>
<tr>
<td>final (overall center-of-mass)</td>
<td>π^\pm_B, p_T</td>
<td>q</td>
<td>L</td>
<td>J</td>
<td>M</td>
</tr>
</tbody>
</table>
We choose as the z-axis the line of flight of the beam particle in the center of mass. That is,
\[\hat{z} = \frac{\hat{k}}{|\hat{k}|}. \]

We now define \(\xi \) as the angle in the center of mass between the line of flight of the eta and the line of flight of the incoming pion. That is,
\[\cos \xi = \frac{\hat{p} \cdot \hat{k}}{|\hat{p}| |\hat{k}|} = \hat{p} \cdot \hat{z}. \]

The vectors \(\hat{p} \) and \(\hat{k} \) define the production plane. The y-axis is defined as the normal to the production plane,
\[\hat{y} = \hat{n} = \frac{\hat{k} \times \hat{p}}{|\hat{k}| |\hat{p}| \sin \xi}, \]
and the x-axis is defined so as to construct a right handed coordinate system, \(\hat{x} = \hat{y} \times \hat{z} \).

We now go to the \(\hat{N} \) rest frame and define the angles \(\theta \) and \(\varphi \) as the polar and azimuthal angles of the decay proton:
\[\cos \theta = \hat{q} \cdot \hat{z} \]
\[\varphi = \tan^{-1} \left[\frac{\hat{q} \cdot \hat{n}}{\hat{q} \cdot \hat{x}} \right] \]

In this frame the z-axis is defined to be in the production plane and at an angle \(\xi \) from the line of flight of the eta.
A three body final state has five external degrees of freedom: three particles each with three components of momentum minus the four energy-momentum equations of constraint. One of these degrees of freedom, the orientation of the production plane in space (say, in the bubble chamber) is of no interest. Thus the four independent variables, $\cos \theta$, $\cos \phi$, and the invariant mass-squared of the \tilde{N}, M^2, are sufficient to completely describe an event.

In terms of these independent variables the differential cross section can be written,

$$d^4\sigma = \left(\frac{1}{kE} \right) |m|^2 \left(\frac{e^2}{E^2} dM^2 d\cos \xi d\cos \theta d\phi \right),$$

where the first factor is the Lorentz invariant flux factor, the second is the absolute square of the matrix element and the third is the Lorentz invariant three body phase space factor. The factor ρ equals pq/M.

B. Mass and Angular Distributions

The production Dalitz plots and their mass squared projections for our three sets of data are shown in Fig. 7. The distributions in the angular variables, $d\sigma/d\cos \xi$, $d\sigma/d\phi$, and $d\sigma/d\cos \theta$, are shown in Figs. 8, 9, and 10, respectively. All errors are statistical and are based only upon the number of events in each bin. The curves shown are the result of the best fit of the parameterization described in Section V.

In Fig. 7 we see that the events are clustered into the upper left hand corners of the Dalitz plots as a result of the formation of the $\Delta(1238) \rightarrow np$. It is seen that the enhancements in the low mass
region of the $M_{\eta p}^2$ distributions is a reflection of the Δ. The distributions in $M_{\eta \pi}^2$ (not shown) show no enhancements.

The distributions in $\cos \xi$, Fig. 8, are the production angular distributions. Production via only s-wave would require these distributions to be completely flat. (We will use lower-case letters to indicate the angular momentum state in which the eta and \tilde{N} is produced, and capital letters to indicate the state in which the \tilde{N} decays.) We see that the "flat" hypothesis is a good one at 1170 MeV/c ($\chi^2 = 3.8$ for the π^+ data and 4.9 for the π^- data, with $<\chi^2> = 4.0$), indicating that higher ℓ values may not be required.

However, the distributions in the azimuthal angle, ϕ, which are shown in Fig. 9, indicate that p-wave production amplitudes are also required. The 1170 MeV/c π^+ data in particular shows a very definite cos ϕ dependence. Production via only s-wave would require the ϕ distributions to be flat. As will become apparent in the next section, it is necessary to add p-wave production amplitudes in order to obtain a cos ϕ dependence.

The distributions in $\cos \Theta$, Fig. 10, are the \tilde{N} decay angular distributions. If the reaction proceeded solely via s-wave production of the $\Delta(1238)$, the distributions would be of the form, $(1 + 3 \cos^2 \Theta)$. If some p-wave Δ production were present, the distributions would no longer be of this form but would still be symmetrical. Asymmetry in the distributions is the result of both S-wave and P-wave decay of the \tilde{N}. The structure of these distributions is such as to be adequately described by only S- and P-wave decay of the \tilde{N} (i.e., partial waves
with $L > 1$ are not needed).

The qualitative remarks made in this section concerning the angular distributions are made more quantitative in the next section. On the basis of the distributions in $\cos \beta$, $\cos \theta$, and ϕ we consider only partial waves with $l = 0$ and l, and $L = 0$ and 1; that is, s- and p-wave production of the eta and (\bar{N}) and S- and P-wave decay of the (\bar{N}).
V. THE PARAMETERIZATION

If we list all possible final state amplitudes which can be produced with $\ell = 0$ and 1, and $L = 0$ and 1, we find a total of ten. (See Appendix A.) In addition each complex amplitude, $(\ell L_J)_g$, can exist in two overall I-spin states: $I = 1/2$ and $I = 3/2$. We want to determine which amplitudes are required by the data and what are the values of the magnitudes and phases of these amplitudes. The $I = 3/2$ amplitudes can be determined from the π^+ data, since $\pi^+ p$ state exists only in $I = 3/2$. The $\pi^- p$ state, however, consists of both $I = 3/2$ and $I = 1/2$. Once the $I = 3/2$ parameters have been determined from the π^+ data, this information can be used to determine the $I = 1/2$ parameters from the π^- data at the same momentum.

At first glance it may seem presumptuous to consider ten complex amplitudes with the order of only a hundred events. This would be true if all we had to work with was one angular distribution, as we certainly could not fit the distribution beyond a few powers in the cosine of the angle and thus the number of amplitudes which could be determined would be severely limited. However in our experiment we have four independent variables and therefore a total of four independent mass and angular distributions to work with, plus all the correlations which exist among the four variables. We do not fit beyond the second power in any one angular distribution. We will show that only four of the ten complex $I = 3/2$ amplitudes are required by the π^+ data and only one of the ten $I = 1/2$ amplitudes is required by the π^- data. Thus we have seven $I = 3/2$ parameters to be determined (four magnitudes and three phases) and two $I = 1/2$ parameters (one magnitude and one
phase). With four independent variables and using the correlations which exist among the variables, we can determine seven parameters quite well with the order of only a hundred events.

We will now describe our technique for examining these correlations. We then go on to describe the procedure used to determine which of the ten complex amplitudes are present for each I-spin state and how the values of the magnitudes and phases of these amplitudes were determined. The results of this parameterization are then examined.

A. The Method of Moments

For each I-spin state the absolute square of the matrix element, $|m|^2$, composed of the ten complex amplitudes is derived in Appendix A and has the form,

$$|m|^2 = \sum_{i=1}^{10} C_i (M_{ij})^2 \left[\gamma_i^m(\xi,0)\gamma_i^m(\eta,\phi) + \gamma_i^m(\xi,0)\gamma_i^m(\eta,\phi) \right]$$

$$(6)$$

$= C_1 \gamma_1^o \gamma_1^o + C_2 \gamma_2^o \gamma_2^o + C_3 \gamma_3^o \gamma_3^o + C_4 \gamma_4^o \gamma_4^o$

$+ C_5 \frac{1}{2} (\gamma_1^r \gamma_1^r + \gamma_2^r \gamma_2^r)$

$+ C_6 \gamma_2^o \gamma_2^o + C_7 \frac{1}{2} (\gamma_2^r \gamma_2^r + \gamma_3^r \gamma_3^r)$

$+ C_8 \gamma_2^o \gamma_2^o + C_9 \frac{1}{2} (\gamma_3^r \gamma_3^r + \gamma_4^r \gamma_4^r)$

$+ C_10 \gamma_3^o \gamma_3^o + C_11 \frac{1}{2} (\gamma_3^r \gamma_3^r + \gamma_4^r \gamma_4^r)$

$+ C_{12} \gamma_3^o \gamma_3^o + C_{13} \frac{1}{2} (\gamma_4^r \gamma_4^r + \gamma_4^r \gamma_4^r)$

$+ C_{14} \frac{1}{2} (\gamma_4^r \gamma_4^r + \gamma_4^r \gamma_4^r)$
where the C's are real functions of $M^2_{\pi\pi}$ $(M^2_{\pi\pi} = M^2$, one of our four independent variables) consisting of combinations of the ten complex amplitudes, $(\ell, L)_{\pi\pi}$ (see Appendix A) and $Y_\ell^m(\xi, \varphi)$ and $Y_\ell^m(\theta, \varphi)$ are the production and decay spherical harmonics, respectively. The quantities, L, ℓ, and the angular variables are defined in Section IV, and $-\ell \leq m \leq \ell, -L \leq M \leq L$.

One possible method for determining which of the ten complex amplitudes are required by the data is to insert Eq. (6) into Eq. (5) and then integrate over three of the four variables to get expressions for the mass distribution and the three angular distributions in terms of the complex amplitudes. A fit to these distributions would then yield some information as to which amplitudes are present. This procedure, however, does not make use of all the information contained in the data, since the various correlations which exist among the four variables integrate out when one obtains a mass or angular distribution.

In order to take these correlations into account we project out each of the fourteen coefficients of the various combinations of the production and decay spherical harmonics present in $|\mathcal{M}|^2$. We make use of the orthonormal property of the spherical harmonics,

$$
\int (q_{ik} Y_k^m)^* (q_{i'k'} Y_{k'}^{m'}) \, d\cos \xi \, d\cos \Theta \, d\varphi = \delta_{kk'} \delta_{mm'} \delta_{ii'} \delta_{ll'}.
$$

Thus,

$$
C_i(M^2_{\pi\pi}) = \int \gamma_m \left[Y_k^m Y_{k'}^{m'} + Y_k^m Y_{k'}^{m'} \right]^* \, d\cos \xi \, d\cos \Theta \, d\varphi,
$$

where $\gamma_m = 1/2$ when $m = M = 0$, and $\gamma_m = 1$ when $m = -M \neq 0$. We define the values,

$$
D_i \equiv \frac{1}{kE^2} \int dM^2 \rho C_i(M^2)
$$
where \(p = p q / M \) and, as defined before, \(k \) is the linear momentum of the beam pion and \(p \) is that of the eta in the overall center of mass; \(E \) is the total energy in that center of mass; \(q \) is the linear momentum of the decay proton in the \(N \) rest frame; and \(M \) is the mass of the \(N \).

We therefore performed operations (7) and (8) on our three sets of data. That is, in each of the \(M^2 \) bins we added up the values of
\[
Y_m (Y_i^{p}Y_i^{\eta} + Y_i^{p}Y_i^{\eta})
\]
and, as defined before, \(k \) is the linear momentum of the beam pion and \(p \) is that of the eta in the overall center of mass; \(E \) is the total energy in that center of mass; \(q \) is the linear momentum of the decay proton in the \(N \) rest frame; and \(M \) is the mass of the \(N \).

We therefore performed operations (7) and (8) on our three sets of data. That is, in each of the \(M^2 \) bins we added up the values of
\[
Y_m (Y_i^{p}Y_i^{\eta} + Y_i^{p}Y_i^{\eta})
\]
to get the distribution, \(\rho C_i (M^2) \); i.e.,
\[
\rho C_i (M^2) = \frac{\sum \text{number of events in bin}_i}{\sum \text{number of events in bin}_i} Y_m (Y_i^{p}Y_i^{\eta} + Y_i^{p}Y_i^{\eta})_{ij}
\]
The value of the error for each bin is given by
\[
J \left[\rho C_i (M^2) \right] = \left[\frac{\sum \text{number of events in bin}_i}{\sum \text{number of events in bin}_i} Y_m (Y_i^{p}Y_i^{\eta} + Y_i^{p}Y_i^{\eta})_{ij} \right]^2
\]
We then obtained the value, \(D_i \), by summing over the \(M^2 \) bins and multiplying by a scale factor to convert from counts to cross section. Thus,
\[
D_i = \text{(scale factor)} \sum_{i \text{ bins}} \rho C_i (M^2)
\]
and
\[
J D_i = \text{(scale factor)} \left[\frac{\sum \text{total number of events in bin}_i}{\sum \text{total number of events in bin}_i} Y_m (Y_i^{p}Y_i^{\eta} + Y_i^{p}Y_i^{\eta})_{ij} \right]^2
\]
The fourteen \(D \) values for each of the three sets of data are presented in Table III.

As stated at the beginning of this subsection, each mass dependent coefficient, \(C_i (M^2) \), consists of combinations of the mass dependent parts of all the complex amplitudes. The type of amplitudes present in each \(C_i (M^2) \), and hence in each \(D_i \), is given in Table IV. (This Table is derived in Appendix A.) In the following subsections by comparing Tables III and IV we obtain the simplest set of amplitudes necessary to fit the data.
B. The π^+ Data

1. Determination of the $I = 3/2$ amplitudes

From the Dalitz plots and angular distributions we believe that the $\Delta(1238)$ is produced. We therefore need at least one amplitude representing Δ production. Of the ten $I = 3/2$ amplitudes, $(\ell L J)_{3/2}$, under consideration, four of them, $(sP_{3/2})_{3/2}$, $(pP_{3/2})_{3/2}$, ν_3, ν_4, represent production of the Δ. (When states differ only in the total angular momentum, J, we use the notation, $(\ell L J)_{3/2}$, ν_3, ν_4,) We begin by choosing the lowest orbital angular momentum state amplitude, $(sP_{3/2})_{3/2}$. Next we see from the π^+ part of Table III (columns la and 2a) that D_3, D_5, D_7 (and of course D_1, since $D_1 = \sigma$) are non-zero. We see from Table IV that in order to make D_3 non-zero we need sS-sP and/or pS-pP interference. (The values of J and J have been supressed). To obtain sS-sP interference we need only to assume one additional amplitude, $(sS_{3/2})_{3/2}$. However, in order to obtain pS-pP interference there are seven additional amplitudes which need to be considered, all of which possess higher angular momentum barriers than the sS amplitude. On the basis of always choosing the lowest angular momentum state amplitudes, we choose the former alternative.

In order to make D_5 non-zero we see from Table IV that we have to add either pS or pP amplitudes. Again choosing the amplitudes with the lower angular momentum barriers, we add the pS amplitudes to our set. The $(pS_{3/2})_{3/2}$ final state originates from the $J_{1/2}$ initial state; the $(pS_{3/2})_{3/2}$ final state from the $J_{3/2}$ initial state. Since the momentum of the beam particle in the overall center-of-mass is of the
order of 600 MeV/c, there is sufficient energy for the initial state to exist in S wave. We therefore include both the \((pS_{v_2})_{v_2}\) and \((pS_{v_2})_{v_2}\) amplitudes.

Next we see from Table IV that in order for \(D_7\) to be non-zero, we need \(sP-sP\) and/or \(pP-pP\) interference. Since we have already chosen the \((sP_{v_2})_{v_2}\) amplitude, no additional amplitudes are required.

Thus in order to obtain non-zero values of \(D_1, D_3, D_5,\) and \(D_7\), we need only the amplitudes: \((ss_{v_2})_{v_2}\), \((sp_{v_2})_{v_2}\), and \((ps_{v_2})_{v_2}\). We assume all other amplitudes are absent. This means that when the \(\tilde{N}\) is in S-wave, we have both s- and p-wave production; when the \(\tilde{N}\) is in P-wave, it has only \(J=3/2\), and is produced only in s-wave.

With this choice of amplitudes all shaded portions of Tables III, IV, and AII should be zero. We see that our assumption that the five \((pP)\) amplitudes, are zero requires \(D_8\) through \(D_{14}\) to be zero. Except for the 1050 MeV/c value of \(D_8\), this requirement is consistent with the \(D\) values, of Table III. The non-zero value at 1050 MeV/c could be a statistical fluctuation.

2. Determination of the values of the magnitudes and phases of the complex amplitudes

Now that we have described the procedure used to determine which complex amplitudes are present in the \(\pi^+\) data, we describe how the magnitudes and phases of these amplitudes were determined. Near threshold the \(M^2\) and \(E\) dependence of the amplitude for \(\pi^+\) can be parameterized by \(A_{sL} e^{i\lambda_{sL}} k^{2P} q^L\), where the quantities \(A_{sL}\) are real positive parameters (assumed to be energy independent),
\(\lambda_{\alpha \beta} \) are phase angles (also assumed to be energy independent), and \(\alpha \) and \(\beta \) are indices used to differentiate the various states (\(\alpha = 0 \) for s-wave and \(2j \) for p-wave; similarly \(\beta = 0 \) for S-wave and \(2j \) for p-wave). Specifically, for our set of four amplitudes, we have

\[
\begin{array}{|c|c|}
\hline
l_g \rightarrow (l L \gamma) \gamma & M^2 \text{ and } E \text{ dependence} \\
\hline
\sigma_{\pi} \rightarrow (s S_{\pi})_{\gamma} & A_{00} e^{i \lambda_{00}} k \\
\sigma_{\pi} \rightarrow (s P_{\pi})_{\gamma} & A_{03} e^{i \lambda_{03}} k^2 \sqrt{M/\Gamma} \left(\frac{1}{\varepsilon - i} \right) \\
\delta_{\pi} \rightarrow (p S_{\pi})_{\gamma} & A_{10} e^{i \lambda_{10}} p \\
\delta_{\pi} \rightarrow (p P_{\pi})_{\gamma} & A_{30} e^{i \lambda_{30}} p k^2 \\
\hline
\end{array}
\]

where the factor, \(\sqrt{M/\Gamma} \left(\frac{1}{\varepsilon - i} \right) \), is the Breit-Wigner amplitude for the \(\Delta(1238) \) resonance. The factor, \(\varepsilon \), is the number of half-widths removed from the resonant energy. That is,

\[
\varepsilon = \frac{M_0^2 - M^2}{M_0 \Gamma} \approx \frac{M_0 - M}{\Gamma/2}
\]

where

\[
\Gamma = \Gamma_0 \left(\frac{q}{q_0} \right)^{13} \left[\frac{[(M + m)^2 - m^2]}{M^2} \right] \\
\]

with \(M_0 = 1236 \text{ MeV} \), \(\Gamma_0 = 120 \text{ MeV} \); and \(q_0 = 251 \text{ MeV} \). Since there is an overall arbitrary phase, we define \(\lambda_{03} = 0 \). We further define

\[
F = (M/\sqrt{\Gamma}) \left(\frac{1}{\varepsilon + i} \right) \text{ and } G = \sqrt{q/\Gamma/M}
\]

Inserting these definitions into the expressions for the C's as derived in Appendix A, and using the above table, we obtain for the \(I = \frac{3}{2} \) amplitudes,
The A_i's and λ's were determined by fitting the 1050 and 1170 MeV/c π^+ data. Equating the numerical value of each D_i as given in Table III with the algebraic expression for the D_i as given by Eqs. (8) and (9), we obtain a set of seven quadratic equations involving the four A_i's and three λ's. For example,

$$D_i = A_{i0}^2 \left[\frac{1}{kF} \int \rho \, dM^2 \right] + 2A_{i3}^2 \left[\frac{1}{kF} \int pF \, dM^2 \right] + \left(A_{i0}^2 + 2A_{i3}^2 k^2 \right) \left[\frac{1}{kF} \int \rho \, dM^2 \right]$$

which at 1170 MeV/c becomes,

$$(53.3 \pm 5.0) \mu b = A_{i0}^2 \left[4.58 \times 10^3 \text{BzV}^2 \right] + 2A_{i3}^2 \left[7.49 \times 10^{-3} \text{BzV}^3 \right]$$

$$+ A_{i0}^2 \left[1.88 \times 10^{-4} \text{BzV}^2 \right] + 2A_{i3}^2 \left[2.83 \times 10^{-5} \text{BzV}^3 \right]$$

The integrations have been performed numerically. At each momentum we have seven such equations. In addition $C_1 (M^2)$, $C_3 (M^2)$, $C_4 (M^2)$, and $C_5 (M^2)$ each have two or more final state momentum dependences, and therefore the relative amounts of each dependence can be fit, thereby yielding more information on the values of the parameters.
(The distributions $C_2(M^2)$, $C_6(M^2)$, and $C_7(M^2)$ each have only one momentum dependence and therefore yield no additional information on the values of the A's and λ's.) We therefore fitted $C_i(M^2)$, $C_3(M^2)$, $C_4(M^2)$, and $C_5(M^2)$ and the seven D_i's at both π^+ momenta simultaneously and obtained the fitted values,\(^{24}\)

\[
\begin{align*}
A_{00} &= (66^{+17}_{-15}) \left[\mu b/\text{GeV}^4 \right]^{1/2} \\
A_{10} &= (166^{+19}_{-21}) \left[\mu b/\text{GeV}^4 \right]^{1/2} \\
A_{20} &= (221^{+21}_{-17}) \left[\mu b/\text{GeV}^4 \right]^{1/2} \\
A_{02} &= (57^{+15}_{-13}) \left[\mu b/\text{GeV}^4 \right]^{1/2}
\end{align*}
\]

with $\chi^2 = 88$, $<\chi^2> = 71$. \hspace{1cm} (11)

3. Comparison at the π^+ data with the results of the fit

With knowledge of the A's and λ's, by Eqs. (8) and (9) we should be able to predict the distributions of all seven $C_i(M^2)$ and the values of the seven D_i's, and hence the mass and angular distributions and the total cross section for the reaction $\pi^+ p \to \pi^+ p \eta$ at any momentum near threshold.

Fig. 5 shows the variation in cross section with beam momentum. The curve labeled "u=0" is the cross section as given by the values at the parameters, Eq. (11). We see that the curve follows the data well from threshold to just above 1170 MeV/c, whereupon it continues to rise steadily, departing from the data. (The other curves will be discussed in the following subsections.)

For the angular distributions the differential cross sections
are obtained by integrating Eq. (5) with respect to the appropriate variables. Thus,

\[\frac{d\sigma}{d\cos \Theta} = \left[(D_i - \frac{\sqrt{2}}{2} D_6) + (\sqrt{3} D_3) \cos \Theta + (\frac{3}{2} \sqrt{6} D_6) \cos^2 \Theta \right] / [\text{no. of bins}] \] (12)

\[\frac{d\sigma}{d\phi} = \left[D_i + (-\frac{3\sqrt{3}}{3\lambda} D_3) \cos \phi \right] / [\text{no. of bins}] \] (13)

\[\frac{d\sigma}{d\cos^2 \Theta} = \left[(\frac{1}{2} - \frac{\sqrt{6}}{2} D_7) + (\sqrt{3} D_3) \cos \Theta + (\frac{3}{2} \sqrt{6} D_6) \cos^2 \Theta \right] / [\text{no. of bins}] \] (14)

The values of the seven \(D_i \)'s at 1050 and 1170 MeV/c, as given by the values of the parameters, Eq. (11), are listed in Table III beside the experimental values. The curves shown in the angular distributions, Figs. 8, 9, and 10, are obtained by using the fitted \(D_i \)'s in Eqs. (12), (13), and (14), respectively. It is seen that the curves follow the data quite well.

The mass distributions, \(d\sigma / dM_{\pi p}^2 \) and \(d\sigma / dM_{\pi p}^2 \), can be obtained by integrating the expression,

\[d^3\sigma = \frac{1}{kE^3} \left(\frac{dM_{\pi p}^2}{dE} \frac{dM_{\pi p}^2}{dE} \right) |\mathcal{M}(M_{\pi p}^2, M_{\pi p}^2)|^2 \]

(which is a differential element of the Dalitz plot) with respect to the appropriate variable. Thus

\[\frac{d\sigma}{dM_{\pi p}^2} = \frac{1}{kE^2} \rho C_i(M_{\pi p}^2) \] (15)

\[\frac{d\sigma}{dM_{\pi p}^2} = \frac{1}{4kE^2} \int_{\text{min}(M_{\pi p}^2)}^{\text{max}(M_{\pi p}^2)} C_i(M_{\pi p}^2) dM_{\pi p}^2 \] (16)
These parameterized curves are shown in Fig. 7.

From Eq. (10) we see that \(D_1 \) consists of the sum of the intensities of the four \(I = 3/2 \) amplitudes and is therefore the sum of four partial cross sections. These partial cross sections are listed in Table V. We see that the \(\Delta(1238) \) accounts for more than half of the reaction at 1050 MeV/c and about three-fourths of the reaction at 1170 MeV/c, with the rest accounted for by non-resonant three body states in which the eta is produced in both s-wave and p-wave with the \((\pi-p)\) system in a relative S-state.

C. Other Experiments Involving the Reaction \(\pi^+ p \rightarrow \pi^+ p \eta \)

We found in the preceding subsection that the cross section, as given by the parameters of Eq. (11) rises steeply beyond 1170 MeV/c, departing from the data. In an attempt to get a parameterized cross section which better follows the data above 1170 MeV/c, we introduce an energy dependence into the quantities \(A_{e\beta} \). We replace \(A_{e\beta} \) with

\[
A_{e\beta} / \left[1 + \sqrt{\frac{E}{m}} f_{e\beta}(E) \right]
\]

where \(f_{e\beta}(E) \) is a function of energy such that at threshold \(f_{e\beta}(E) = 0 \). The function \(f_{e\beta}(E) \) is chosen such that at high energy it cancels the threshold kinematical factors and hence \(\sigma_{e\beta} \rightarrow \frac{1}{4\pi} (g_{e\beta} + \frac{1}{2}) \pi / k^2 \), which is \(1/u \) times the unitarity limit for that partial wave. Thus, we choose

\[
\sigma_{e\beta} = n_{e\beta} \frac{A_{e\beta}}{E} \sqrt{k^{2x+1} p_n^{2x+1} q^{2x+1}}
\]

for the non-resonant amplitudes and

\[
n_{e\beta} \frac{A_{e\beta}}{E} \sqrt{k^{2x+1} p_n^{2x+1} q^{2x+1}} \text{ for the resonant amplitude where } P_M
\]

and \(q_M \) are the maximum values of \(p \) and \(q \), respectively, at energy \(E \), and \(Q = E - m_\pi - m_\eta - m_\rho \). The constant \(n_{e\beta} \) is chosen such that at high energy,

\[
\left[\frac{A_{e\beta}}{E^2} k^{2x+1} \int p^{2x} q dM^2 \right] / \left[f_{e\beta}(E) \right]^2 = 1
\]
where $g = F$, the Breit-Wigner intensity, for the resonant amplitude, and $g = 1$ for the non-resonant amplitude. For simplicity we take the dimensionless parameter, u, to be the same for all four amplitudes. Since $u = 1$ for the unitarity limit, we must have $u \geq 1$ for non-violation of unitarity.

Fitting only our 1050 and 1170 MeV/c data to this hypothesis, we obtain,

\[
\begin{align*}
A_{00} &= (71^{+27}_{-25}) \left[\frac{\mu b}{8 eV^2} \right]^{\frac{1}{2}} \\
A_{10} &= (212^{+74}_{-62}) \left[\frac{\mu b}{8 eV^2} \right]^{\frac{1}{2}} \\
A_{30} &= (329^{+77}_{-96}) \left[\frac{\mu b}{8 eV^2} \right]^{\frac{1}{2}} \\
A_{02} &= (296^{+80}_{-35}) \left[\frac{\mu b}{8 eV^2} \right]^{\frac{1}{2}} \\
u &= (94^{+17}_{-32})
\end{align*}
\]

with $\chi^2 = 80$, $<\chi^2> = 70$.

Figure 5 displays the cross section curve resulting from the parameters of Eq. (17). We see that our best fit value, $u = 94$, gives a predicted cross section that lies below the ten measured cross sections located between 1.2 and 3.7 BeV/c. (The overall χ^2 is 80 + 25, with $<\chi^2> = 70 + 10$.) By decreasing u to 67 we decrease the overall χ^2 to $(81 + 15) = 96$, where the contribution from our data alone is 81. This is in good agreement with $<\chi^2> = 80 \pm \sqrt{2 <\chi^2>} = 80 \pm 13$. Thus our simple model for the energy dependence of the parameters, $A_{\alpha\beta}$, involving just one additional parameter, u, gives good agreement with all of our data and with the ten additional cross sections lying between 1.2 and 3.7 BeV/c. However, in order for the parameter values, Eq. (17), to be meaningful we must be able to predict
not only the value of the total cross section at a particular beam momentum, but also all the mass and angular distributions at that momentum.

The published distributions of references (2-7) are reproduced in Fig. II; the curves are those predicted by the parameters which produce the u = 67 curve of Fig. 5. It is seen that all mass distributions are in good agreement. The production angular distributions are in good agreement at low energy but our fit is unable to produce the forward peaking that arises with increased beam momentum. The only decay angular distributions which are available are those of reference 2, and they are not well represented by the curves. Thus, the assumption of phases which are constant with beam momentum probably becomes inadequate, and/or more partial waves become necessary at these higher energies.

D. The π^- Data

While the π^+p state consists of only $I = 3/2$ amplitudes, the π^-p state has both $I = 3/2$ and $I = 1/2$ amplitudes. Thus, for the π^-p reaction each complex amplitude, $(\ell' L' J')_y$, becomes

$$(\ell L J)_y \rightarrow \frac{1}{3} (\ell L J)^{3/2} + \frac{2}{3} (\ell' L' J')^{3/2}$$

(18)

and therefore,

$$[(\ell L J)_y][(\ell' L' J')_y]^* \rightarrow \frac{1}{3} [(\ell L J)^{3/2}] [(\ell' L' J')^{3/2}]^*$$

$$\quad + \frac{2}{3} [(\ell L J)^{3/2}] [(\ell' L' J')^{3/2}]^*$$

$$+ \frac{3}{3} [(\ell L J)^{3/2}] [(\ell' L' J')^{3/2}]^*$$

$$+ \frac{2}{3} [(\ell L J)^{3/2}] [(\ell' L' J')^{3/2}]^*$$

$$+ \frac{3}{3} [(\ell L J)^{3/2}] [(\ell' L' J')^{3/2}]^*$$
We see that if all the $I = 1/2$ amplitudes were zero, then each $C_i(M^2)$ for the π^- data would be $1/9$ of the corresponding $C_i(M^2)$ for the π^+ data (at the same momentum). Of course, the same relationship would hold for each D_i.

From Table III we see that at 1170 MeV/c $D_1(\pi^-)$ is not equal to $1/9$ of $D_1(\pi^+)$; i.e., the ratio of the total cross sections is not $1/9$. Therefore at least one $I = 1/2$ amplitude is required. We also see that, like the π^+ data, each $D_i(\pi^-)$, $i = 8$ to 14, is consistent with zero so that there is no need to consider $I = 1/2$ pP amplitudes. Next we see from Table IV that if the $I = 1/2$ (sS) amplitude is present, we expect it to contribute to $D_2(\pi^-)$ through sS-pS interference (where the pS amplitude exists in $I = 3/2$) and to $D_3(\pi^-)$ through sS-sP interference (where the sP amplitude exists in $I = 3/2$). Therefore if the $I = 1/2$ (sS) amplitude contributes, $D_1(\pi^-)$, $D_2(\pi^-)$ and $D_3(\pi^-)$ are not constrained to be $1/9$ of their corresponding π^+ values. Similarly from Table IV we see that if a $I = 1/2$ (pS) amplitude is present then $D_1(\pi^-)$, $D_2(\pi^-)$, $D_4(\pi^-)$, $D_5(\pi^-)$ and $D_6(\pi^-)$ are not constrained to be $1/9$ of their corresponding π^+ values. Finally if a $I = 1/2$ (sP) amplitude is present, then $D_1(\pi^-)$, $D_3(\pi^-)$, $D_4(\pi^-)$, $D_5(\pi^-)$ and $D_7(\pi^-)$ are not constrained to the $1/9$ value. Examination of Table III shows that, except for D_1, each experimental value, $D_i(\pi^-)$ (column 3a) is consistent with $1/9$ of the corresponding experimental value, $D_i(\pi^+)$ (column 2a); the errors involved, however, are so large as to make the values insensitive to any inconsistencies with the $1/9$ value. Thus, other than the fact that at least one $I = 1/2$ amplitude is required,
comparison of the experimental π^- values with the experimental π^+ values (comparison of column 3a with column 2a of Table III) leads to no new information as to which $I = 1/2$ amplitudes are needed.

However, if we now make use of the values of the $I = 3/2$ amplitudes as determined by our fit to the π^+ data, we can compare the $D_{1i}(\pi^-)$ values (column 3a) with the $D_i(\pi^+)$ values of column 2b. If this is done, we see that $D_2(\pi^-) = 2.90 \pm 1.63$ is almost two standard deviations away from $1/9$ of $D_2(\pi^+) = 0.13$, indicating (from Table IV) that sS and/or pS $I = 1/2$ amplitudes may be present.

Considering the three $I = 1/2$ complex amplitudes, $(sS_{1/2})_{1/2}$, $(pS_{1/2})_{1/2}$, we proceeded, as we did with the π^+ data, to determine the magnitudes and phases (or the real and imaginary parts) of these amplitudes. Each $C_i(M^2)$ of Eq. (12) was modified to include the $I = 1/2$ parameters. As prescribed by Eq. (18),

$$A_{\alpha\beta} e^{i\lambda \alpha} \rightarrow \frac{1}{3} A_{\alpha\beta} e^{i\lambda \alpha} + \frac{2}{3} B_{\alpha\beta} e^{i\mu \alpha}$$

and

$$A_{\alpha\beta} e^{i\lambda \alpha} \rightarrow \frac{1}{3} A_{\alpha\beta} e^{i\lambda \alpha}$$

where the B's and the μ's are the magnitudes and phases, respectively, of the $I = 1/2$ complex amplitudes. Using these modified $C_i(M^2)$ and D_i expressions and using the A's and λ's of Eq. (11), we fitted the π^- data in the same manner as we had fitted the π^+ data, and obtained,

$$\text{Re} \{B_{45} e^{i\nu \alpha}\} = (38 \pm 9)[a b / 8\text{eV}]^{1/2} \quad \text{Im} \{B_{45} e^{i\nu \alpha}\} = (-85 \pm 10)[a b / 8\text{eV}]^{1/2}$$

$$\text{Re} \{B_{10} e^{i\nu \alpha}\} = (-68 \pm 9)[a b / 8\text{eV}]^{1/2} \quad \text{Im} \{B_{10} e^{i\nu \alpha}\} = (77 \pm 9)[a b / 8\text{eV}]^{1/2}$$

$$\text{Re} \{B_{50} e^{i\nu \alpha}\} = (150 \pm 25)[a b / 8\text{eV}]^{1/2} \quad \text{Im} \{B_{50} e^{i\nu \alpha}\} = (-136 \pm 25)[a b / 8\text{eV}]^{1/2}$$
We see that B_{10} and B_{30} are consistent with zero and that therefore $(sS_{1/2})_{1/2}$ is the only $I = 1/2$ amplitude needed to fit the data. (Had we limited ourselves at the beginning of this subsection to only one $I = 1/2$ amplitude, the simplest hypothesis would have been $(sS_{1/2})_{1/2}$; all other amplitudes are suppressed due to angular momentum barriers with no strong forces acting, such as in the $\Delta(1238)$, to enhance any of them.) Setting $B_{10} = 0$ and $B_{30} = 0$ we obtain

$$B_{oo} = (93 \pm 19) \mu b / E_{\pi} \nu^2 \quad \gamma_{oo} = (5.12 \pm 0.14) \text{ rad.}$$

with $\chi^2 = 37$, $<\chi^2> = 37$.

The D_i (π^-) values as given by the fit are given in column 3b of Table III. D_i (π^-), $i = 4$ to 7, are of course $1/9$ of the corresponding D_i (π^+) value, as given by the π^+ fit, since B_{oo} and γ_{oo} do not enter into the expressions for these D_i. The π^- angular distributions are shown in Fig. 8, 9, and 10; the curves are the distributions as given by Eqs. (12), (13), and (14) using these fitted D_i (π^-) values. Agreement is good.

Since the $(sP_{3/2})_{1/2}$ and $(pS_{1/2})_{1/2}$ amplitudes are assumed to be present only in the $I = 3/2$ state, their relative contribution to the π^-p reaction can be computed as follows:

$$\sigma(\pi^-p \rightarrow \pi^-p\eta) = \frac{1}{9} \sigma(\pi^+p \rightarrow \pi^+p\eta)$$

Thus since the reaction $\pi^+p \rightarrow \eta\Delta(1238)$ accounts for 73% of eta production in the π^+p reaction at 1170 MeV/c, the reaction $\pi^-p \rightarrow \eta\Delta$...
(1238) accounts for \(\frac{1}{9} \) \((73^\circ/\sigma) \) \((53.3 \text{ mb}/15.9 \text{ mb}) = 27^\circ/\sigma \) of \(\eta \) production in the \(\pi^- p \) reaction at this momentum. Similarly, \(6^\circ/\sigma \) of in the \(\pi^- p \) reaction proceeds via \(I=3/2 \) (pS) amplitudes. The remainder of the reaction, \(67^\circ/\sigma \), is accounted for by the total \(sS \) intensity, which is composed of both \(I=3/2 \) and \(I=1/2 \) amplitudes. We cannot say how much of the reaction proceeds via the \(I=1/2 \) \(sS \) amplitude alone or via the \(I=3/2 \) \(sS \) amplitude alone, since in any expression involving these two amplitudes, there is always present an interference term between them.25 This interference term is present in \(C_4(M^2) \), and hence in \(d\sigma/dM_{\pi p}^2 \) and in \(d\sigma/dM_{\eta p}^2 \). Thus, only the total \(sS \) contribution can be given. The relative contributions and the partial cross sections for the \(\pi^- p \) reaction at \(1170 \text{ MeV/c} \) are listed in Table V.

The distributions in \(M^2_{\pi p} \) and \(M^2_{\eta p} \), as given by the values of the \(\pi^- \) parameters, are shown in Fig. 5. Again, agreement is good.

If we extrapolate the \(\pi^- \) parameters, assuming phases which are constant with beam momentum and an amplitude dependence as prescribed in Section VC with \(u = 67 \), we obtain the dashed curve of Fig. 5. The curve is in good agreement with the \(\pi^- \) cross section points.

There are no mass or angular distributions published for points \(h^8 \) and \(i^9 \). For points \(j^{10} \) there are mass distributions which indicate that the \(N^*(1688) \) and the \(A_2(1300) \) are produced in addition to the \(\Delta(1238) \). Thus more amplitudes are necessary at high energy.

E The \(N^*(1550) \rightarrow n p \) Resonance

In the last few years the existence of a resonance, the \(N^*(1550) \), which decays mainly into \(n p \), has been inferred on the basis of phase
shift analysis of $\pi^- p$ elastic scattering and on the basis of experiments which exhibit a cross section enhancement near threshold in the reactions $\gamma p \rightarrow \eta n$ and $\pi^- p \rightarrow \eta n$. This resonance, however, has yet to be seen as an enhancement in the $(\eta-N)$ mass distribution in a reaction involving the final state of three or more particles.

We see from our Dalitz plots in Fig. 7 that the mass and width values of the $N^*(1550)$ are such as to fill up the entire region of the plots; thus it is difficult to deduce the presence or absence of this resonance in our experiment. In order to make use of all four independent variables and all the correlations which exist among the variables, we have added amplitudes for the production of the $N^*(1550)$ resonance to the matrix element. (See Appendix B.) The C_i $(M^2_{\pi p})$ expressions derived in Appendix A are now replaced by more complicated expressions, $C_i (M^2_{\pi p}, M^2_{\eta p})$, and these new expressions were used to fit the data.

For the π^+ data we included in the fit $I=3/2$ amplitudes for s-wave and p-wave production of the $N^*(1550)$ along with the original four $I=3/2$ amplitudes of Section VB. At 1050 MeV/c addition of the $N^*(1550)$ amplitudes does not change the chisquare minimum from that obtained with just the original four amplitudes. At 1170 MeV/c we find a chisquare minimum at $Re\{s\text{-wave amplitude}\} = (-4.7^{+7}_{-13}) [\mu b/\text{BeV}]^{1/2}$ $Im\{s\text{-wave amplitude}\} = (-8^{+8}_{-15}) [\mu b/\text{BeV}]^{1/2}$ and p-wave amplitudes equal zero, with $\chi^2 = 41.0$, $<\chi^2> = 38$; setting both s-wave and p-wave $N^*(1550)$ amplitudes equal to zero we obtain $\chi^2 = 42.3$, $<\chi^2> = 40$. Thus production of the $N^*(1550) \rightarrow \eta p$ is undetectable in our
In fitting the π^- data we set the $I=3/2$ amplitudes for $N^*(1550)$ production equal to zero, since the π^+ data shows that none are required. We find a chissquare minimum at $Re\{s\text{-wave amplitude}\} = (1.1 \pm 2.1) [\mu b/\text{BeV}]$, $Im\{s\text{-wave amplitude}\} = (0.5 \pm 1.7) [\mu b/\text{BeV}]$, and p-wave amplitudes equal zero, with $\chi^2 = 37.7$, $<\chi^2> = 43$; setting both s- and p-wave $N^*(1550)$ amplitudes equal to zero we obtain, $\chi^2 = 37.8$, $<\chi^2> = 45$. Thus, the decay, $N^*(1550) \rightarrow \eta p$ is undetectable in our π^- data.

We next ask, what are the upper limits for the reaction $\pi^+_p \rightarrow \pi^+_N N^*(1550); N^*(1550) \rightarrow \eta p$? When the matrix element contains amplitudes for $N^*(1550)$ production the cross section is not composed of the sum of the partial cross sections due to each amplitude. There are always present interference terms involving the $N^*(1550).^{25}$ Thus, in obtaining an upper limit we cannot quote a cross section due to the $N^*(1550)$ alone. If, however, we attribute all interference terms involving the $N^*(1550)$, as well as the $N^*(1550)$ intensity terms, to the formation of the resonance, we obtain at the 90\% confidence level,

$$\frac{\sigma(\pi^+_p \rightarrow \pi^+_N N^*(1550); N^*(1550) \rightarrow \eta p)}{\sigma(\pi^+_p \rightarrow \pi^+_p \eta)} \leq 0.08 \quad (0.8 \mu b \text{ at 1050 MeV/c})$$

$$\leq 0.19 \quad (10.1 \mu b \text{ at 1170 MeV/c}).$$
Assuming the $I=3/2$ amplitudes for $N^*(1550)$ production are zero, at 1170 MeV/c we obtain at the 90% confidence level an upper limit on $I=1/2$ $N^*(1550)$ amplitudes of 7.6 µb, or

$$\frac{\sigma(\pi^- p \rightarrow \pi^- N^*(1550); N^*(1550) \rightarrow \eta p)}{\sigma(\pi^- p \rightarrow \pi^- p \eta)} \leq 0.48.$$
VI. SUMMARY

A simple phenomenological model has been presented which describes eta production in the reaction $\pi p \rightarrow \pi p \eta$ near threshold. A partial wave analysis was made, using our π^+ data at 1050 and 1170 MeV/c and π^- data at 1170 MeV/c, in which it was found that four $I=3/2$ amplitudes, $(sS_{1/2})_{1/2}$, $(sP_{3/2})_{1/2}$, and $(pS_{1/2})_{1/2}$, are required by the π^+ data and that an additional $I=1/2$ amplitude, $(sS_{1/2})_{1/2}$, is required by the π^- data. The magnitudes and phases of these amplitudes have been determined.

It is found that the π^+p reaction is dominated by s-wave production of the $\Delta(1238) \rightarrow \pi^+p$ resonance, while the π^-p reaction is dominated by the $I=1/2$ amplitude in which all particles are in relative S-states. The fitted parameters produce a cross section variation with energy, and mass and angular distributions which are in good agreement with our data.

The parameters were then extrapolated to higher energies where we obtain good agreement with the energy variation of the cross section and with some of the published mass and angular distributions. It appears, however, that as the beam momentum increases, an energy variation of the phases and/or more partial waves probably become necessary.

We further find that the reaction $\pi p \rightarrow \pi N^*(1550); \quad N^*(1550) \rightarrow \eta p$ is undetectable in both our π^+ and π^- data; upper limits are obtained.
ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the continued interest and support of Professor Luis W. Alvarez and to thank him for the opportunity provided by him and his group. In particular I wish to express my appreciation of the constant advice, guidance, and stimulation provided by Professor Frank S. Crawford, Jr. I also gratefully acknowledge the numerous helpful discussions with Dr. Le Roy R. Price and thank him for his valuable assistance with the data analysis. The able direction of Dr. Earle C. Fowler and the participation of Lester J. Lloyd in the early stages of the data analysis is very much appreciated.

I further wish to thank Mr. Fred Graham for his expeditious handling of the computer program operation, Mrs. Ann McLellan and Miss E. Kapfenberg for typing the manuscript, and the scanning and measuring staff for their fine work.

This work was done under the auspices of the U. S. Atomic Energy Commission.
APPENDICES

A. Derivation of the Matrix Element

We want to derive the absolute square of the matrix element, Eq.(6), arising from the ten complex amplitudes considered in Section V. The ten amplitudes written in terms of $\mathcal{L}_\rho \rightarrow (\ell L_J)_\rho$ are listed in Table AI. (See Section IV for notation.)

We take the beam direction as the quantization axis. (See Section IV.) Along this axis the initial $\pi-p$ state has $J_z = \pm \frac{3}{2}$, the spin projection of the proton, since there can be no component of the initial orbital angular momentum, \mathcal{L}, along the beam. We expand the states $(\ell L_J)_\rho$ in terms of spherical harmonics. In general

\[
(\ell L_J)_\rho = \alpha(M^2_{\rho}) \left| \ell L J, J, J_\rho \right>
\]

\[
= \alpha(M^2_{\rho}) \sum_{m=J_\rho} \left< \ell m; J M_z \left| J, \frac{3}{2} \right> \right| \ell m \right| J M_z >
\]

where the μ_m are the Clebsh-Gordan coefficients and the $y^{\ell m}_{\ell m} (\xi, \omega)$ are the spherical harmonics in the variables ξ and ω. Expanding further,

\[
|J M_z > = \sum_{M_s} \left< \ell M; \frac{1}{2} M_s | J M_z > \right| \ell M > | \frac{1}{2}, M_s >
\]

where the ν_m are the Clebsh-Gordan coefficients, the $Y_{\ell m}^M (\theta, \phi, \Omega_s)$ are the spherical harmonics in the variables θ and ϕ, and $\nu_{\ell m} (\xi, \omega)$ and $\nu_{\ell m} (\xi, \omega)$ are the decay proton spin projections. Combining the two expansions we have

\[
(\ell L_J)_\rho = \alpha_{\rho}(M^2_{\rho}) \sum_{m} \sum_{M_s} \mu_m Y^{\ell m}_{\ell m} (\xi, \omega) Y_{\ell m}^M (\theta, \phi) X^{M_s}_{\rho}
\]

where $\alpha_{\rho} = 0$ for $\rho = 0$ and $\alpha_{\rho} = 2 \pi$ for $\rho = 1$; $\beta_\rho = 0$ for $\ell = 0$ and $\beta_\rho = 2 \pi$ for $\ell = 1$.
In terms of this expansion the ten final state complex amplitudes are:

\[
(s S_w)_{1/2} = a_{00} \{ \gamma_0^* \gamma_{1/2} \}
\]
\[
(s p_w)_{1/2} = a_{01} \{ \pm \sqrt{2} \gamma_0^* \gamma_{1/2} \pm \sqrt{2} \gamma_{1/2}^* \gamma_0 \}
\]
\[
(s p_w)_{3/2} = a_{03} \{ \pm \sqrt{2} \gamma_{1/2}^* \gamma_0 \pm \sqrt{2} \gamma_0^* \gamma_{1/2} \}
\]
\[
(p S_w)_{1/2} = a_{10} \{ \gamma_0 \gamma_{1/2} \}
\]
\[
(p S_w)_{3/2} = a_{20} \{ \gamma_{1/2}^* \gamma_0 \}
\]
\[
(p p_w)_{1/2} = a_{11} \{ \gamma_{1/2} \gamma_0 \}
\]
\[
(p p_w)_{3/2} = a_{30} \{ \gamma_0 \gamma_{3/2} \}
\]
\[
(p p_w)_{3/2} = a_{31} \{ \gamma_{3/2} \gamma_0 \}
\]
\[
(p p_w)_{3/2} = a_{32} \{ \gamma_{3/2} \gamma_0 \}
\]
\[
(p p_w)_{3/2} = a_{33} \{ \gamma_{3/2} \gamma_0 \}
\]

where the upper sign is used when the spin projection of the initial proton is \(+1/2\), and the lower sign is used when the spin projection is \(-1/2\). (All arguments have been suppressed.)
The matrix element is now the sum of these expanded complex amplitudes,
\[m^z = \sum_{p=q}^{r-s} \sqrt{g+\frac{1}{2}} \left(-1 \right)^{s+p+\frac{1}{2}} a_\mu (M^0) \sum_{m} \sum_{M} \mu_n \gamma_m Y^m_L (\phi, \theta) Y^m_L (\phi, \theta) \]

where \(m^z \) is that portion of the matrix element for \(\theta_2 = +\frac{1}{2} \) and \(m^\pm \) is for \(\theta_2 = -\frac{1}{2} \) and the factors dependent on \(\mathcal{L} \) and \(\gamma \) result from the expansion of an incoming plane wave into an outgoing spherical wave. The desired expression, Eq. (6), is \(|m|^2 = \frac{1}{2} |m^+|^2 + \frac{1}{2} |m^-|^2 \).

We can now gather terms and write
\[m^z = G^z \chi^{+\frac{1}{2}} + H^z \chi^{-\frac{1}{2}} \]

where
\[G^z = a_{out} \gamma^0 \gamma^0 + \sqrt{2} (a_{out} + 2 a_{in}) \gamma^0 \gamma^0 + \sqrt{2} (a_{out} + 2 a_{in}) \gamma^0 \gamma^0 + \frac{1}{2} \left[(a_{out} + 2 a_{in}) - \sqrt{2} (a_{out} + \sqrt{2} a_{in} - 3 \sqrt{2} a_{in}) \right] \gamma^0 \gamma^0 - \frac{2}{3} \left[(a_{out} - a_{in}) - \frac{1}{\sqrt{2}} (a_{out} + \sqrt{2} a_{in} + 3 \sqrt{2} a_{in}) \right] \gamma^0 \gamma^0 + \frac{1}{\sqrt{2}} (a_{out} + 2 \sqrt{2} a_{in} + \sqrt{2} a_{in}) \gamma^{+1} \gamma^{+1} \]

\[H^z = -\sqrt{\frac{3}{2}} (a_{out} - a_{in}) \gamma^0 \gamma^0 - \sqrt{\frac{3}{2}} (a_{out} - a_{in}) \gamma^0 \gamma^0 - \frac{1}{\sqrt{2}} (a_{out} + 2 a_{in}) + \frac{1}{\sqrt{2}} (a_{out} + \sqrt{2} a_{in} - 3 \sqrt{2} a_{in}) \gamma^0 \gamma^0 - \frac{3}{\sqrt{2}} \left[(a_{out} - a_{in}) + \frac{1}{\sqrt{2}} (a_{out} + \sqrt{2} a_{in} + 3 \sqrt{2} a_{in}) \right] \gamma^0 \gamma^0 + \frac{1}{\sqrt{2}} (a_{out} - a_{in}) + \frac{1}{\sqrt{2}} (a_{out} + \sqrt{2} a_{in} - 3 \sqrt{2} a_{in}) \gamma^0 \gamma^0 \]
We note that upon taking the absolute square of the amplitudes \(G^\pm \) and \(H^\pm \), the variables \(\varphi \) and \(\omega \) always appear in the combination \((\varphi - \omega)\).

As defined by the spherical harmonics, \(\varphi \) and \(\omega \) are measured with respect to some coordinate system fixed in space. The angle \(\omega \) is the azimuthal angle of the production plane in space; it is of no interest in this experiment. What is of interest is the angle \((\varphi - \omega)\), the azimuthal angle of the decay proton with respect to the production plane. We therefore redefine the angle \((\varphi - \omega)\) as \(\varphi \).

The absolute square of the matrix element, \(|m|^2\), is now obtained by taking the absolute square of \(G^\pm \) and \(H^\pm \). That is

\[
|m|^2 = \frac{1}{2} |m^+|^2 + \frac{1}{2} |m^-|^2
\]

(81)

\[
= \frac{1}{2} \left[|G^+|^2 + |H^+|^2 + |G^-|^2 + |H^-|^2 \right]
\]

Re-expressing the angles in terms of spherical harmonics we have

Gathering up terms that have the same angular dependence, we have

\[
|m|^2 = \sum_{\ell=0}^2 \frac{1}{2\ell + 1} C_{\ell} (M_{mp})^{\frac{1}{2}} \left[q_{y_0} Y_{\ell}^0 (\varphi, \theta) Y_{-\ell}^0 (\varphi, \theta) + q_{y_0} Y_{-\ell}^0 (\varphi, \theta) \right] \]

(6)

\[
= C_0 y_0 Y_0^0 + C_2 y_0 Y_0^0 + C_3 y_0 Y_0^0
\]

\[
+ C_4 y_0 Y_1^0 + C_5 \frac{1}{2} (y_1^- Y_1^+ + y_1^+ Y_1^-)
\]

\[
+ C_6 y_0 Y_2^0 + C_7 y_0 Y_2^0
\]

\[
+ C_8 y_2^0 Y_1^0 + C_9 \frac{1}{2} (y_2^- Y_2^+ + y_2^+ Y_2^-)
\]

\[
+ C_{10} y_0 Y_2^0 + C_{11} \frac{1}{2} (y_2^- Y_2^+ + y_2^+ Y_2^-)
\]

\[
+ C_{12} y_2^0 Y_2^0 + C_{13} \frac{1}{2} (y_2^- Y_2^+ + y_2^+ Y_2^-)
\]

\[
+ C_{14} \frac{1}{2} (y_2^0 Y_2^{\pm 2} + y_2^\pm Y_2^2)
\]
where the fourteen C's are real functions of $M_{\pi p}^2$, resulting from combinations of the various complex $a_{\omega\beta}$'s. The dependence of each $C_i(M_{\pi p}^2)$ on the $a_{\omega\beta}(M_{\pi p}^2)$'s is given Table AII. If we are not interested specifically in the values of \mathcal{J} (the total angular momentum of the state) and J (the total angular momentum of the final π-p state), we can look at the type of terms, $\langle l l' l' \rangle$, which comprise each $C_i(M_{\pi p}^2)$. These terms are listed in Table IV for each $C_i(M_{\pi p}^2)$. For example, from Table AII we see that $C_4 = \frac{2}{3} \langle (a_{10} + 2a_{30})| (a_{10} + 2a_{30}) \rangle + \frac{2}{3} \langle a_{00} | (a_{10} + 2a_{30}) | \frac{\sqrt{13}}{3} a_{10} + 3 \sqrt{\frac{2}{3}} a_{30} \rangle$. If we are not interested in the values of \mathcal{J} and J, we see that C_4 consists of terms of the type $\langle ps | s P \rangle$ and $\langle s S | p P \rangle$.

In Section V we show that the only complex amplitudes which need to be considered are $\langle sS_{\frac{1}{2}} | s_2 \rangle$, $\langle sP_{\frac{3}{2}} | s_2 \rangle$, and $\langle pS_{\frac{1}{2}} | s_2 \rangle$. Thus G^\pm and H^\pm simplify to

$$G^\pm = a_{00} + (a_{10} + 2a_{30}) \cos \xi + 2a_{30} \cos \theta$$

$$H^\pm = (a_{10} - a_{30}) \sin \xi e^{i\phi} - a_{30} \sin \theta e^{2i\phi}$$

and each $C_i(M_{\pi p}^2)$ simplified considerably; all terms in Table AII and Table IV which are shaded become zero.

We therefore have:

$$C_i = |a_{00}|^2 + 2|a_{30}|^2 + |a_{10}|^2 + 2|a_{30}|^2$$

$$C_2 = \frac{4}{9} \Re (a_{10}^* a_{10} + 2a_{30}^* a_{30})$$

$$C_3 = \frac{4}{\sqrt{3}} \Re (a_{00}^* a_{30})$$

$$C_4 = \frac{4}{3} \Re (a_{10}^* a_{30} + 2a_{30}^* a_{30})$$

$$C_5 = \frac{4}{3} \Re (a_{00}^* a_{30} - a_{30}^* a_{30})$$

$$C_6 = \frac{2}{3} |a_{30}|^2 + \frac{4}{\sqrt{3}} \Re (a_{10}^* a_{30})$$

$$C_7 = \frac{2}{\sqrt{3}} |a_{00}|^2$$
Expressing each complex $a_{\alpha\beta} (M_{\eta p}^2)$ in terms of $[A_{\alpha\beta}][\text{kinematical factor}] [e^{iA_{\alpha\beta}}]$, as prescribed in Section V, we obtain Eq. (9).

B. Inclusion of $N^*(1550) \to \eta p$ Resonances Amplitudes in the Matrix Element

In Appendix A we show that

$$G = a_{00} + (a_{00} + 2a_{30}) \cos \xi + 2a_{30} \cos \Theta \tag{A2}$$

$$H = (a_{00} - a_{30}) \sin \xi e^{i\omega} - a_{30} \sin \Theta e^{i\phi}$$

if we consider only the complex amplitudes, $(s S_{1/2})_{1/2}$, $(s' S_{1/2})_{1/2}$, and $(p S_{1/2})_{1/2}$. All quantities are referred to the $(\pi-p)$ rest frame and are defined in Appendix A.

In addition to the above amplitudes we also want to consider s'- and p'-wave production of the S'-wave resonance, the $N^*(1550) \to \eta p$. (We will use primes to indicate quantities referred to the $(\eta-p)$ rest frame in the same way that the unprimed quantities are referred to the $(\pi-p)$ rest frame.) Production via d'-wave and higher need not be considered since these waves produce terms in $\cos 3\xi$ and higher, $\cos 3\Theta$ and higher, and $\cos 2\phi$ and higher; these higher order terms are not required by the data, adding amplitudes $(s' S_{1/2})_{1/2}$ and $(p' S_{1/2})_{1/2}$ and $\gamma_{1/2}$ to Eq. (A2), we have

$$G' = (a_{00} + a_{00}') + (a_{00} + 2a_{30}) \cos \xi' + (a_{00}' + 2a_{30}') \cos \xi' + 2a_{30} \cos \Theta'$$

$$H' = (a_{00} - a_{30}) \sin \xi e^{i\omega} + (a_{00}' - a_{30}') \sin \xi' e^{i\omega'} - a_{30} \sin \Theta e^{i\phi}$$

By Eq. (A1),
\[|\gamma|^2 = (a_{oo}^2 + 2a_{oo}a_{\phi}^0 + a_{\phi}^2) \]
\[+ (a_{\phi}^2 - 2a_{\phi}a_{\phi} + a_{\phi}^2) \]
\[+ (a_{\phi}^2 - 2a_{\phi}a_{\phi} + a_{\phi}^2) \]
\[+ a_{\phi}^2 (1 + 3\cos^2\Theta) \]
\[+ (6a_0 a_{\phi} + 3a_{\phi}^2) \cos^2\xi \]
\[+ (6a_{\phi} a_{\phi} + 3a_{\phi}^2) \cos^2\xi' \]
\[+ (2a_{\phi} e_{\phi} + 4a_{\phi} a_{\phi} + 4a_{\phi} a_{\phi} + 8a_{\phi} a_{\phi}) \cos\xi \cos\xi' \]
\[+ (2a_{\phi} e_{\phi} - 2a_{\phi} e_{\phi} - 2a_{\phi} e_{\phi} + 2a_{\phi} e_{\phi}) \sin\xi \sin\xi' \cos(\omega - \omega') \]
\[+ (2a_{\phi} e_{\phi} + 4a_{\phi} e_{\phi} + 4a_{\phi} e_{\phi}) \cos\xi \]
\[+ (2a_{\phi} e_{\phi} + 4a_{\phi} e_{\phi} + 4a_{\phi} e_{\phi}) \cos\xi' \]
\[+ (4a_{\phi} a_{\phi} + 4a_{\phi} a_{\phi}) \cos\Theta \]
\[+ (4a_{\phi} a_{\phi} + 8a_{\phi} a_{\phi}) \cos\xi \cos\Theta \]
\[+ (4a_{\phi} a_{\phi} + 8a_{\phi} a_{\phi}) \cos\xi' \cos\Theta \]
\[+ (-2a_{\phi} a_{\phi} + 2a_{\phi} a_{\phi}) \sin\xi \sin\Theta \cos(\omega - \omega') \]
\[+ (-2a_{\phi} a_{\phi} + 2a_{\phi} a_{\phi}) \sin\xi' \sin\Theta \cos(\omega - \omega') \]

where we use the shorthand notation, \(a_{\phi}^2 = |a_{\phi}|^2 \)

and \(a_{\phi} a_{\phi} = \text{Re} \{a_{\phi}, a_{\phi}\} \).
In Eq. (B1) we have a mixed set of variables. So that we may know which quantities belong in which C_i, the variables $\cos \xi', \sin \xi' \cos \omega'$, and $\sin \xi' \sin \omega'$ must be expressed in terms of the independent variables $\cos \xi$, $\cos \Theta$, and φ. As in Appendix A we define the azimuthal angle, ω, to be zero, thereby defining the plane of reference.

In order to express $\cos \xi'$ in terms of the independent angles we note that by Lorentz transformation

$$\vec{q} = \vec{p}' + \vec{\beta} \left[\frac{(\vec{p}' \cdot \vec{\beta})(\gamma - 1)}{\beta^2} - \gamma \epsilon_\pi \right]$$ \hspace{1cm} (B2)

where \vec{p}' and ϵ_π are the momentum and energy, respectively, of the pion in the center of mass, and

$$\vec{\beta} = -\frac{\vec{p}}{E - \epsilon_\eta} \hspace{1cm} (B3)$$

$$\gamma = \frac{E - \epsilon_\eta}{M}$$

$$\epsilon_\eta = \sqrt{p'^2 + m_\eta^2}$$

Using Eq. (B3) and the fact that

$$p'^2 = (E - \epsilon_\eta)^2 - M^2 = (E - \epsilon_\eta + M)(E - \epsilon_\eta - M)$$

$$E_\pi = \gamma (\epsilon_\pi - \vec{\beta} \cdot \vec{p})$$

we get

$$\vec{q}' = \vec{p}' + \tau \vec{p}$$
where
\[\tau' = \frac{\xi + E}{E - \xi' + M} \]

Therefore
\[\hat{p}' = \frac{\hat{q} - (\frac{\tau P'}{P'}) \hat{p}}{P'} \quad (E4) \]

The z-axis, the direction of the beam in the center of mass, is common to both the primed and unprimed coordinate systems. Therefore taking the z-component of Eq. (E4) we get
\[\cos \xi' = \left(\frac{\hat{q}}{P'} \right) \cos \theta - \left(\frac{\tau P'}{P'} \right) \cos \xi \quad (E5) \]

To obtain the other two angular quantities we need the following space angle relationships,
\[\hat{p} \cdot \hat{q} = \cos \xi \cos \theta + \sin \xi \sin \theta \cos \varphi \quad (E6) \]
\[\hat{p}' \cdot \hat{q} = \cos \xi' \cos \theta + \sin \xi' \sin \theta \cos (\varphi - \omega') \quad (E7) \]
\[\hat{p} \cdot \hat{p}' = \cos \xi \cos \xi' + \sin \xi \sin \xi' \cos \omega' \quad (E8) \]

Now equate Eq. (E8) with \(\hat{p} \) dotted with Eq. (E4) and use Eqs. (E6) and (E7) to get
\[\sin \xi' \cos \omega' = \left(\frac{\hat{q}}{P'} \right) \sin \theta \cos \varphi - \left(\frac{\tau P'}{P'} \right) \sin \xi \quad (E9) \]

To obtain the other angular quantity equate Eq. (E7) with \(\hat{q} \) dotted with Eq. (E4) and use Eqs. (E5), (E7) and (E9) to get
\[\sin \xi \sin \omega' = \left(\frac{\hat{q}}{P'} \right) \sin \theta \sin \varphi \quad (E10) \]

We now put Eqs. (E5), (E9), and (E10) into Eq. (E1) and converting to spherical harmonics we obtain the quantities \(C_i (M^2, M'^2) \):
\[C_i (M^2, M'^2) = \left\{ \left(a_{\theta \theta}^2 + 2a_{\theta \phi}^2 + a_{\phi \phi}^2 + 2a_{\theta \phi}^2 \right) \right\} \]
\[+ \left(a_{\theta \theta}^2 + 2a_{\theta \phi}^2 a_{\phi \phi}^2 \right) \]
\[+ \left(4a_{\theta \phi}^2 a_{\phi \phi}^2 \right) \frac{q}{P'} \]
\[- \left(2a_{\theta \phi} a_{\phi \phi}^2 + 4a_{\theta \phi} a_{\phi \phi}^2 \right) \frac{\tau P'}{P'} \]
\[+ \left(a_{\phi \phi}^2 + 4a_{\phi \phi} a_{\phi \phi}^2 \right) \left[(\frac{q}{P'})^2 + (\frac{\tau P'}{P'})^2 \right] \]
\[c_2 (M^2, M^{*2}) = \left\{ (2a_{oo}a_{10} + 4a_{oo}a_{30}) + (2a_{oo}^\prime a_{10} + 4a_{oo}^\prime a_{30}) \right. \\
\left. - (2a_{oo}a_{10}^\prime + 4a_{oo}a_{30}^\prime + 2a_{oo}a_{10} + 4a_{oo}a_{30}) \frac{\tau_p}{p^2} \right\} \frac{1}{\sqrt{3}} \]

\[c_3 (M^2, M^{*3}) = \left\{ (4a_{oo}a_{20}) + (4a_{oo}^\prime a_{20}) \right. \\
\left. + (2a_{oo}a_{20}^\prime + 4a_{oo}a_{20} + 2a_{oo}^\prime a_{20} + 4a_{oo}a_{20}^\prime) \frac{q}{p} \right\} \frac{1}{\sqrt{3}} \]

\[c_4 (M^2, M^{*4}) = \left\{ (4a_{22}a_{10} + 8a_{22}a_{30}) \\
\left. - (4a_{22}a_{10}^\prime + 8a_{22}a_{30}^\prime) \frac{\tau_p}{p^2} \right. \\
\left. + (2a_{22}a_{10}^\prime + 4a_{22}a_{30}^\prime + 4a_{22}a_{10} + 8a_{22}a_{30}) \frac{q}{p} \right. \\
\left. - (2a_{10} + 8a_{10}a_{30} + 8a_{30}^2) \frac{\tau_p q}{p^2} \right\} \frac{1}{3} \]

\[c_5 (M^2, M^{*5}) = \left\{ (4a_{22}a_{10} - 4a_{22}a_{20}) \\
\left. - (4a_{22}a_{10}^\prime - 4a_{22}a_{20}^\prime) \frac{\tau_p}{p^2} \right. \\
\left. + (-4a_{10}a_{10}^\prime + 4a_{10}^\prime a_{30} + 4a_{10}a_{30} - 4a_{30}a_{30}) \frac{q}{p} \right. \\
\left. - (-4a_{10}^2 + 8a_{10}a_{30} - 4a_{30}^2) \frac{\tau_p q}{p^2} \right\} \frac{1}{3} \]

\[c_6 (M^2, M^{*6}) = \left\{ (2a_{oo}a_{30} + a_{30}^2) \right. \\
\left. + (2a_{oo}^\prime a_{30} + a_{30}^\prime) \frac{\tau_p q}{p^2} \right. \\
\left. + (2a_{oo}a_{30} + 2a_{oo}a_{30} + 2a_{oo}^\prime a_{30}) \frac{q}{p} \right\} \frac{3}{\sqrt{5}} \]

\[c_7 (M^2, M^{*7}) = \left\{ (a_{oo}^2) + (2a_{22}a_{10} + 2a_{22}a_{30}) \frac{q}{p} \\
\left. + (2a_{10}a_{30} + a_{30}^\prime) \frac{q^2}{p^2} \right\} \frac{3}{\sqrt{5}} \]
We now need the M^2 dependence of the a''s, and the M'^2 dependence of the a's. For the $\pi^+ p$ data the M^2 dependence is given in Section V and the M'^2 dependence is as follows:

$$
\begin{align*}
\alpha_{\alpha_0}^{\prime} (M'^2) &= A_{a_0}^{\prime} e^{i\lambda_{\alpha_0}^{\prime}} k \sqrt{M^2/q' \Gamma'} \left(\frac{1-x}{e'^{-i}}\right) \\
\alpha_{\alpha_0}^{\prime} (M'^2) &= A_{a_0}^{\prime} e^{i\lambda_{\alpha_0}} p' \sqrt{M^2/q' \Gamma'} \left(\frac{1-x}{e'^{-i}}\right) \\
\alpha_{\alpha_0}^{\prime} (M'^2) &= A_{a_0}^{\prime} e^{i\lambda_{\alpha_0}} p' k^2 \sqrt{M^2/q' \Gamma'} \left(\frac{1-x}{e'^{-i}}\right)
\end{align*}
$$

(B12)

where

$$
\epsilon' = (M_o^2 - M'^2)^2/\Gamma' M_o
$$

$$
\Gamma' = \Gamma_0 \left(\frac{q'}{q} \left(\frac{M'}{M_o}\right)^{-r}\right)
$$

with

$$
M_o = 1550 \text{ MeV}, \quad \Gamma_0 = 130 \text{ MeV}, \quad x = 0.30, \quad \text{and} \quad q_o \text{ the value of } q' \text{ at resonance}.
$$

Substituting Eqs. (11) and (B12) into Eq. (B11) gives $C_i (M^2, M'^2)$ explicitly in terms of the A's, λ's and various momentum dependences. Now, integration over M'^2, one variable of the production Dalitz plot, give the C_i's in the other variable, M^2. Treating these new expressions as described in Section V, we can fit the $\pi^+ p$ data and determine the quantities, $A_{\alpha_0}^{\prime}$, A_{α_0}, $A_{\alpha_0}^{\prime}$, $\lambda_{\alpha_0}^{\prime}$, λ_{α_0}, $\lambda_{\alpha_0}^{\prime}$.

For the $\pi^- p$ data we make the substitution $A_{\alpha_0}^{\prime} e^{i\lambda_{\alpha_0}^{\prime}} \rightarrow \frac{1}{3} A_{\alpha_0}^{\prime} e^{i\lambda_{\alpha_0}^{\prime}} + \frac{2}{3} B_{\alpha_0} e^{i\nu_{\alpha_0}}$ and $A_{\alpha_0} e^{i\lambda_{\alpha_0}} \rightarrow \frac{1}{3} A_{\alpha_0} e^{i\lambda_{\alpha_0}}$ except that

$$
A_{\alpha_0} e^{i\lambda_{\alpha_0}} \rightarrow \frac{1}{3} A_{\alpha_0} e^{i\lambda_{\alpha_0}} + \frac{2}{3} B_{\alpha_0} e^{i\nu_{\alpha_0}}.
$$

Now fitting the $\pi^- p$ data, we obtain the quantities, B_{α_0} and ν_{α_0}.
FOOTNOTES AND REFERENCES

16. The beam contaminations have been determined by: Fernand Grard and Gerald A. Smith, Phys. Rev. 127, 607 (1962) for the 1050 MeV/c π⁺ data; Frank S. Crawford, Jr., Fernand Grard, and Gerald A. Smith, Phys. Rev. 128, 368 (1962) for the 1170 MeV/c π⁺ data; Jarad A. Anderson, UCRL 10838 (1962) for the 1170 MeV/c π⁻ data.

18. G.R. Lynch, Program FAKE: Monte Carlo Simulation of Bubble Chamber Events, UCRL 10335 (1962). This program generates "bubble chamber events" by a Monte-Carlo method. These events are then
sent through the same programs used for the real events. In this manner one can easily calculate the effects of any set of correlated or uncorrelated cutoffs.

19. The attenuation due to strong interactions is based on π^+p total cross sections of 27.04 ± 0.30 mb. and 29.69 ± 0.44 mb. at 1050 and 1170 MeV/c, respectively, determined by Thomas J. Devlin, Burton J. Moyer, and Victor Perrez-Mendez, Phys. Rev. 125, 690 (1962), and a π^-p total cross section of 37.30 ± 0.55 mb at 1170 MeV/c determined by B. Amblard, P. Borgeaud, Y. Ducros, P. Falk-Vairiant, O. Guisan, W. Laskar, P. Sonderugger, A. Stirling, M. Yvert, A. Tran Ha, and S.D. Warshaw, Phys. Letters 10, 138 (1964).

20. The lab quantities were first transformed to the center of mass and then to the \bar{N} rest frame. Because of the non-linearity of velocity addition in the Lorentz transformation, the z-axis obtained by this procedure differs by a small rotation from that obtained by transforming from the laboratory to the \bar{N} rest frame directly.

21. Since parity is conserved in strong interactions, the φ distributions have been folded about 180°.

22. The factor $\sqrt{m/q}$ arises from dividing out the two body phase space factor; the factor \sqrt{T} appears because we choose the model in which the Δ is made "directly" in the same strong reaction in which the eta is made. If we choose the model in which the three final state particles are made directly and then the Δ
is formed by "rescattering", the \sqrt{R} factor would not appear.

24. In order to convert from $\eta \to \pi^+ \pi^- \pi^0$ decay to $\eta \to$ all decays, multiply the magnitudes by \sqrt{R}, where $R = \Gamma (\eta \to \pi^+ \pi^- \pi^0)/\Gamma (\eta \to \text{all})$. In order to convert the magnitude values to fermis, divide out the radius of interaction.

25. It is interesting to note that the fact that there are no interference terms between one partial wave and another in the cross section expression, D_1, is a general result and not a consequence of the particular partial waves chosen. (For example, see Table AII.) In order for D_1, and hence the mass distributions $d\sigma/dM_{\pi\pi}^2$ and $d\sigma/dM_{p\pi}^2$, to exhibit interference terms one of two conditions must exist. The first is the presence of two or more amplitudes which belong to the same partial wave, such as resonant and non-resonant amplitudes or two or more amplitudes of different I-spin. There will then be interference terms arising from these amplitudes of the same partial wave. The second condition which gives rise to interference terms is that the matrix element consists of both an amplitude which is a function of M^2 (one projection of the production Dalitz plot) and M'^2 (another projection of the Dalitz plot). (See Appendix B.) There will then be interference terms between amplitudes of M^2 and amplitudes of M'^2 which come from the same initial state, L_η.

F. Uchiyama-Campbell and R.K. Logan, Phys. Rev. 149, 1220 (1966);
<table>
<thead>
<tr>
<th></th>
<th>Part I</th>
<th>Part II</th>
<th>Part III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of pictures scanned</td>
<td>34,928</td>
<td>18,309</td>
<td>93,291</td>
</tr>
<tr>
<td>Beam tracks per frame</td>
<td>17.22±0.39</td>
<td>17.4±0.5</td>
<td>13.76±0.90</td>
</tr>
<tr>
<td>Length of beam track in fiducial volume</td>
<td>(157.3±1.1) cm</td>
<td>145 cm</td>
<td>(157.3±1.1) cm</td>
</tr>
<tr>
<td>Total track length scanned (corrected)</td>
<td>(94.61±1.14)×10⁶ cm</td>
<td>(98.49±1.32)×10⁶ cm</td>
<td>(124.75±1.92)×10⁶ cm</td>
</tr>
<tr>
<td>Beam contamination</td>
<td>(5.1±2.0) %</td>
<td>(3.0±1.6) %</td>
<td>(6.7±2.1) %</td>
</tr>
<tr>
<td>Attenuation due to strong interactions</td>
<td>76 %</td>
<td>8.6%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Total corrected track length</td>
<td>(82.96±2.56)×10⁶ cm</td>
<td>(49.05±1.35)×10⁶ cm</td>
<td>(185.00±12.83)×10⁶ cm</td>
</tr>
<tr>
<td>Number of observed events</td>
<td>135</td>
<td>87</td>
<td>57</td>
</tr>
<tr>
<td>Scanning efficiency</td>
<td>(95.0±1.9)%</td>
<td>(98.1±2.0)%</td>
<td>(90.1±1.8)%</td>
</tr>
<tr>
<td>Selection criteria efficiency</td>
<td>91.5%</td>
<td>91.5%</td>
<td>91.5%</td>
</tr>
<tr>
<td>Number of corrected events</td>
<td>155.0±13.7</td>
<td>111.4±12.9</td>
<td>61.4±9.1</td>
</tr>
<tr>
<td>Partial Cross section</td>
<td>(53.3±5.0) fb</td>
<td>(15.9±1.9) fb</td>
<td>(9.5±1.5) fb</td>
</tr>
</tbody>
</table>
Table II. Partial cross sections for $\pi^+\pi^-\eta$; $\eta \rightarrow \pi^+\pi^-\pi^0$ in mb.

<table>
<thead>
<tr>
<th>Incident Beam Momentum (GeV/c)</th>
<th>$\pi^+p \rightarrow \pi^+p\eta$</th>
<th>$\eta \rightarrow \pi^+\pi^-\pi^0$</th>
<th>$\pi^-p \rightarrow \pi^-p\eta$</th>
<th>$\eta \rightarrow \pi^+\pi^-\pi^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05 (^a)</td>
<td>0.0095 ± 0.0015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.17 (^a)</td>
<td>0.0533 ± 0.0050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22 (^b)</td>
<td>0.069 ± 0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.39 (^b)</td>
<td>0.130 ± 0.045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.59 (^c)</td>
<td>0.12 ± 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.03 (^h)</td>
<td></td>
<td>0.0159 ± 0.0019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.08 (^d)</td>
<td></td>
<td></td>
<td>0.031 ± 0.010</td>
<td></td>
</tr>
<tr>
<td>2.08 (^i)</td>
<td>0.15 ± 0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.34 (^e)</td>
<td>0.23 ± 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.62 (^e)</td>
<td>0.18 ± 0.09</td>
<td>0.037 ± 0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.9 (^e)</td>
<td>0.15 ± 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 (^i)</td>
<td></td>
<td>0.030 ± 0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.43 (^f)</td>
<td>0.09 ± 0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.54 (^f)</td>
<td>0.07 ± 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.65 (^g)</td>
<td>0.06 ± 0.02</td>
<td></td>
<td></td>
<td>0.021 ± 0.007</td>
</tr>
<tr>
<td>4.2 (^j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) This experiment
\(^b\) See reference 2
\(^c\) See reference 3
\(^d\) See reference 4
\(^e\) See reference 5
\(^f\) See reference 6
\(^g\) See reference 7
\(^h\) See reference 8
\(^i\) See reference 9
\(^j\) See reference 10
Table III. Values of the D_k's in μb. The values D_8 through D_{14} (the shaded region) would be zero if our final choice of amplitudes were correct.

<table>
<thead>
<tr>
<th></th>
<th>1050 MeV/c Π^+</th>
<th>1170 MeV/c Π^+</th>
<th>1170 MeV/c Π^-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1a. experimental values</td>
<td>1b. fitted values</td>
<td>2a. experimental values</td>
</tr>
<tr>
<td>D_1</td>
<td>9.50 ± 1.51</td>
<td>7.55</td>
<td>53.30 ± 5.02</td>
</tr>
<tr>
<td>D_2</td>
<td>-1.19 ± 1.12</td>
<td>0.50</td>
<td>5.71 ± 4.49</td>
</tr>
<tr>
<td>D_3</td>
<td>-3.31 ± 1.49</td>
<td>-1.23</td>
<td>-12.47 ± 4.89</td>
</tr>
<tr>
<td>D_4</td>
<td>-0.35 ± 1.27</td>
<td>0.20</td>
<td>5.16 ± 4.95</td>
</tr>
<tr>
<td>D_5</td>
<td>-0.46 ± 1.46</td>
<td>-1.63</td>
<td>-22.01 ± 4.63</td>
</tr>
<tr>
<td>D_6</td>
<td>-3.05 ± 1.25</td>
<td>-0.46</td>
<td>-2.51 ± 4.11</td>
</tr>
<tr>
<td>D_7</td>
<td>2.76 ± 1.47</td>
<td>1.98</td>
<td>8.26 ± 4.75</td>
</tr>
<tr>
<td>D_8</td>
<td>3.46 ± 1.39</td>
<td></td>
<td>3.33 ± 4.36</td>
</tr>
<tr>
<td>D_9</td>
<td>0.25 ± 1.25</td>
<td></td>
<td>3.84 ± 4.90</td>
</tr>
<tr>
<td>D_{10}</td>
<td>0.63 ± 1.26</td>
<td></td>
<td>-2.88 ± 4.78</td>
</tr>
<tr>
<td>D_{11}</td>
<td>-1.31 ± 1.45</td>
<td></td>
<td>4.62 ± 4.90</td>
</tr>
<tr>
<td>D_{12}</td>
<td>-0.68 ± 1.42</td>
<td></td>
<td>3.47 ± 4.16</td>
</tr>
<tr>
<td>D_{13}</td>
<td>-0.27 ± 1.37</td>
<td></td>
<td>1.38 ± 4.97</td>
</tr>
<tr>
<td>D_{14}</td>
<td>0.65 ± 1.35</td>
<td></td>
<td>-4.18 ± 4.53</td>
</tr>
</tbody>
</table>
Table II. Type of terms present in each $C_i(N^2)$ and D_i. The F and g values have been suppressed. For example, $\langle pS|pS \rangle$ includes the following terms: $|\langle pS|v_1 \rangle|^2$, $|\langle pS|v_2 \rangle|$, and $\langle (pS|v_2) \rangle \langle (pS|v_2) \rangle$. The terms in column b (the shaded region) become zero under the choice of amplitudes made in Section V.

<table>
<thead>
<tr>
<th>C_i</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>\sigma S</td>
</tr>
<tr>
<td>C_1</td>
<td>$\langle sS</td>
<td>pS \rangle$</td>
</tr>
<tr>
<td>C_2</td>
<td>$\langle sS</td>
<td>sS \rangle$</td>
</tr>
<tr>
<td>C_3</td>
<td>$\langle pS</td>
<td>sP \rangle$</td>
</tr>
<tr>
<td>C_4</td>
<td>$\langle pS</td>
<td>sP \rangle$</td>
</tr>
<tr>
<td>C_5</td>
<td>$\langle pS</td>
<td>pS \rangle$</td>
</tr>
<tr>
<td>C_6</td>
<td>$\langle sP</td>
<td>sP \rangle$</td>
</tr>
<tr>
<td>C_7</td>
<td>$\langle sP</td>
<td>sP \rangle$</td>
</tr>
<tr>
<td>C_8</td>
<td>$\langle sP</td>
<td>pP \rangle$</td>
</tr>
<tr>
<td>C_9</td>
<td>$\langle sP</td>
<td>pP \rangle$</td>
</tr>
<tr>
<td>C_{10}</td>
<td>$\langle sP</td>
<td>pP \rangle$</td>
</tr>
<tr>
<td>C_{11}</td>
<td>$\langle sP</td>
<td>pP \rangle$</td>
</tr>
<tr>
<td>C_{12}</td>
<td>$\langle sP</td>
<td>pP \rangle$</td>
</tr>
<tr>
<td>C_{13}</td>
<td>$\langle sP</td>
<td>pP \rangle$</td>
</tr>
<tr>
<td>C_{14}</td>
<td>$\langle sP</td>
<td>pP \rangle$</td>
</tr>
</tbody>
</table>
Table V. Partial cross sections and percentages of the four partial waves present in the reaction $\pi p \rightarrow \pi \eta$.

<table>
<thead>
<tr>
<th>Partial Wave</th>
<th>1050 MeV/c π^+</th>
<th>1170 MeV/c π^+</th>
<th>1170 MeV/c π^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(sS_{\frac{1}{2}})_{\frac{1}{2}}$</td>
<td>2.2 μb</td>
<td>6.7 μb</td>
<td>10.8 μb</td>
</tr>
<tr>
<td></td>
<td>$24 \pm 7%$</td>
<td>$13 \pm 4%$</td>
<td>$67 \pm 3%$</td>
</tr>
<tr>
<td>$(sP_{\frac{3}{2}})_{\frac{3}{2}}$</td>
<td>5.6 μb</td>
<td>39.0 μb</td>
<td>4.5 μb</td>
</tr>
<tr>
<td></td>
<td>$59 \pm 6%$</td>
<td>$73 \pm 7%$</td>
<td>$27 \pm 4%$</td>
</tr>
<tr>
<td>$(pS_{\frac{1}{2}})_{\frac{1}{2}}$</td>
<td>1.2 μb</td>
<td>5.0 μb</td>
<td>0.6 μb</td>
</tr>
<tr>
<td></td>
<td>$13 \pm 3%$</td>
<td>$9 \pm 2%$</td>
<td>$4 \pm 1%$</td>
</tr>
<tr>
<td>$(pS_{\frac{1}{2}})_{\frac{3}{2}}$</td>
<td>0.5 μb</td>
<td>2.6 μb</td>
<td>0.3 μb</td>
</tr>
<tr>
<td></td>
<td>$4 \pm 1%$</td>
<td>$5 \pm 1%$</td>
<td>$2 \pm 1%$</td>
</tr>
</tbody>
</table>
Table A.I. The ten possible states resulting from s- and p-wave eta and $(\pi - p)$ production and s- and p-wave decay of the $(\pi - p)$ system.

<table>
<thead>
<tr>
<th>Final state $(l\bar{L}_T)_J$</th>
<th>Initial state L_J</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(s S_{\frac{1}{2}})_{\frac{1}{2}}$</td>
<td>$P_{\frac{1}{2}}$</td>
</tr>
<tr>
<td>$(s P_{\frac{3}{2}})_{\frac{1}{2}}$</td>
<td>$S_{\frac{1}{2}}$</td>
</tr>
<tr>
<td>$(s P_{\frac{3}{2}})_{\frac{3}{2}}$</td>
<td>$S_{\frac{3}{2}}$</td>
</tr>
<tr>
<td>$(p S_{\frac{1}{2}})_{\frac{1}{2}}$</td>
<td>$S_{\frac{1}{2}}$</td>
</tr>
<tr>
<td>$(p S_{\frac{1}{2}})_{\frac{3}{2}}$</td>
<td>$S_{\frac{3}{2}}$</td>
</tr>
<tr>
<td>$(p P_{\frac{3}{2}})_{\frac{1}{2}}$</td>
<td>$P_{\frac{1}{2}}$</td>
</tr>
<tr>
<td>$(p P_{\frac{3}{2}})_{\frac{3}{2}}$</td>
<td>$P_{\frac{3}{2}}$</td>
</tr>
<tr>
<td>$(p P_{\frac{3}{2}})_{\frac{3}{2}}$</td>
<td>$P_{\frac{3}{2}}$</td>
</tr>
<tr>
<td>$(p P_{\frac{3}{2}})_{\frac{3}{2}}$</td>
<td>$P_{\frac{3}{2}}$</td>
</tr>
<tr>
<td>$(p P_{\frac{3}{2}})_{\frac{1}{2}}$</td>
<td>$P_{\frac{1}{2}}$</td>
</tr>
<tr>
<td>$(p P_{\frac{3}{2}})_{\frac{1}{2}}$</td>
<td>$P_{\frac{1}{2}}$</td>
</tr>
</tbody>
</table>
Table AII. Definition of the $C_c(M^3)$'s and D_c's in terms of
the a's. The shaded terms are zero under the choice of
amplitudes made in Section V.

| C_1 | $|a_{oo}|^2 + \frac{1}{2}|a_{01}|^2 + 2|a_{03}|^2 + |a_{10}|^2 + 2|a_{30}|^2$
| | $+ 2|a_{41}|^2 + 2|a_{22}|^2 + \frac{1}{3}\alpha_{44}^2 = 2|a_{42}|^2 + 3|a_{55}|^2$ |
| C_2 | $\frac{2}{\sqrt{3}} \langle a_{oo} | (a_{oo} + 2a_{30}) \rangle$
| | $+ \frac{2}{3\sqrt{3}} \langle (a_{11} + 2a_{33})(a_{11} + 2a_{33}) - \sqrt{2} (a_{11} + i\sqrt{2} a_{33} - 3\sqrt{3} a_{55}) \rangle$
| | $+ \frac{4}{4} \langle (a_{01} - a_{03}) | (a_{33} + 2a_{33}) + \frac{1}{12} (a_{11} + i\sqrt{2} a_{33} - 3\sqrt{3} a_{55}) \rangle$ |
| C_3 | $\frac{2}{\sqrt{3}} \langle (a_{oo} | (a_{01} + 2a_{03}) \rangle$
| | $+ \frac{2}{3\sqrt{3}} \langle (a_{oo} + 2a_{oo})(a_{01} + 2a_{03}) - \sqrt{2} (a_{11} + i\sqrt{2} a_{33} - 3\sqrt{3} a_{55}) \rangle$
| | $+ \frac{4}{4} \langle (a_{10} - a_{30}) | (a_{01} - a_{03}) + \frac{1}{12} (a_{11} + i\sqrt{2} a_{33} + 3\sqrt{3} a_{55}) \rangle$ |
| C_4 | $\frac{2}{\sqrt{3}} \langle (a_{oo} + 2a_{30}) | (a_{01} + 2a_{03}) \rangle$
| | $+ \frac{2}{3\sqrt{3}} \langle (a_{00}) (a_{01} + 2a_{03}) - \sqrt{2} (a_{11} + i\sqrt{2} a_{33} - 3\sqrt{3} a_{55}) \rangle$ |
| C_5 | $-\frac{1}{3} \langle (a_{10} - a_{30}) | (a_{01} - a_{03}) \rangle$
| | $+ \frac{2}{3} \langle a_{oo} | (a_{01} - a_{03}) - \frac{1}{2} (a_{11} + 4i\sqrt{2} a_{33} + 3\sqrt{3} a_{55}) \rangle$
| | $- \sqrt{2} \langle a_{oo} | (a_{11} - 2i\sqrt{2} a_{33} + 3\sqrt{3} a_{55}) \rangle$ |
| C_6 | $\frac{2}{3\sqrt{3}} |(a_{oo} + 2a_{30})|^2 - \frac{2}{3\sqrt{3}} |(a_{00} - a_{30})|^2$
| | $+ \frac{2}{9\sqrt{3}} |(a_{11} + 2a_{33}) - \sqrt{2} (a_{11} + i\sqrt{2} a_{33} - 3\sqrt{3} a_{55})|^2$
| | $- \frac{4}{9\sqrt{3}} |(a_{01} - a_{03}) - \frac{1}{2} (a_{11} + 4i\sqrt{2} a_{33} + 3\sqrt{3} a_{55})|^2$
| | $+ \frac{4}{9\sqrt{3}} |(a_{01} + 2a_{33}) + \frac{1}{2} (a_{11} + i\sqrt{2} a_{33} - 3\sqrt{3} a_{55})|^2$
| | $- \frac{2}{9\sqrt{3}} |(a_{01} - a_{03}) + \frac{1}{2} (a_{01} + 4i\sqrt{2} a_{33} + 3\sqrt{3} a_{55})|^2$
| | $- \frac{1}{2\sqrt{3}} |(a_{11} - 2i\sqrt{2} a_{33} + 3\sqrt{3} a_{55})|^2$ |

continued on next page
| \(C_7 \) | \(\frac{2}{315} | (a_{10}^\prime + 2a_0) | (a_{11}^\prime + 2a_1^\prime) | - \frac{2}{525} | (a_{20}^\prime - a_{22}) |^2
\)
\(+ \frac{2}{975} | (a_{11} + 2a_1^\prime) - \sqrt{2} (a_{12} + 2a_3^\prime - 3\sqrt{2} a_{13}^\prime) |^2
\)
\(- \frac{1}{975} | (a_{12}^\prime - a_{32}^\prime) - \frac{1}{12} (a_{10}^\prime + 4\sqrt{2} a_{12}^\prime + 3\sqrt{5} a_{33}^\prime) |^2
\)
\(- \frac{2}{975} | (a_{11} + 2a_1^\prime) + \frac{1}{12} (a_{12} + 4\sqrt{2} a_{33}^\prime + 3\sqrt{5} a_{13}^\prime) |^2
\)
\(+ \frac{1}{975} | (a_{12}^\prime - 2\sqrt{5} a_{13}^\prime + 3\sqrt{7} a_{33}^\prime) |^2
\)
| \(C_8 \) | \(\frac{2}{315} \) \(\langle a_{10} + 2a_0 | (a_{11}^\prime + 2a_1^\prime) - \sqrt{2} (a_{12} + 2a_3^\prime - 3\sqrt{2} a_{13}^\prime) \rangle
\)
\(- \frac{2}{975} \langle (a_{10} - a_{20}) | (a_{11}^\prime - a_{31}^\prime) + \frac{1}{12} (a_{12} + 4\sqrt{2} a_{12}^\prime + 3\sqrt{5} a_{33}^\prime) \rangle
\)
| \(C_9 \) | \(\frac{2}{315} \) \(\langle (a_{10} + 2a_0) | (a_{11}^\prime - a_{31}^\prime) - \frac{1}{2\sqrt{2}} (a_{12} + 4\sqrt{2} a_{12}^\prime + 3\sqrt{5} a_{33}^\prime) \rangle
\)
\(- \frac{2}{975} \langle (a_{10} - a_{20}) | (a_{11}^\prime - a_{31}^\prime) + \frac{1}{12} (a_{12} + 4\sqrt{2} a_{33}^\prime + 3\sqrt{5} a_{33}^\prime) \rangle
\)
| \(C_{10} \) | \(\frac{2}{315} \) \(\langle (a_{10}^\prime + 2a_0) | (a_{11}^\prime + 2a_1^\prime) - \sqrt{2} (a_{12} + 2a_3^\prime - 3\sqrt{2} a_{13}^\prime) \rangle
\)
\(- \frac{2}{975} \langle (a_{10}^\prime - a_{20}) | (a_{11}^\prime + 2a_1^\prime) + \frac{1}{12} (a_{12} + 4\sqrt{2} a_{12}^\prime + 3\sqrt{5} a_{33}^\prime) \rangle
\)
| \(C_{11} \) | \(\frac{2}{315} \) \(\langle (a_{10}^\prime + 2a_0) | (a_{11}^\prime - a_{31}^\prime) - \frac{1}{2\sqrt{2}} (a_{12} + 4\sqrt{2} a_{12}^\prime + 3\sqrt{5} a_{33}^\prime) \rangle
\)
\(- \frac{2}{975} \langle (a_{10}^\prime - a_{20}) | (a_{11}^\prime - a_{31}^\prime) + \frac{1}{12} (a_{12} + 4\sqrt{2} a_{33}^\prime + 3\sqrt{5} a_{33}^\prime) \rangle
\)
| \(C_{12} \) | \(\frac{2}{315} \) \(\langle a_{10}^\prime + 2a_0) | (a_{12} + \sqrt{2} a_{12}^\prime - 3\sqrt{2} a_{13}^\prime) |^2
\)
\(+ \frac{2}{525} | (a_{11}^\prime + 2a_1^\prime) + \frac{1}{12} (a_{12} + \sqrt{2} a_{33}^\prime - 3\sqrt{2} a_{13}^\prime) |^2
\)
\(+ \frac{2}{525} | (a_{11}^\prime - a_{31}^\prime) - \frac{1}{12} (a_{11}^\prime + \sqrt{2} a_{33}^\prime + 3\sqrt{2} a_{13}^\prime) |^2
\)
\(+ \frac{2}{525} | (a_{12}^\prime + 2a_2^\prime) + \frac{1}{12} (a_{12}^\prime + \sqrt{2} a_{33}^\prime + 3\sqrt{2} a_{33}^\prime) |^2
\)
\(+ \frac{1}{10} \langle (a_{12}^\prime - 2\sqrt{5} a_{13}^\prime + 3\sqrt{7} a_{33}^\prime) \rangle
\)
(continued on next page)
\[-60 - \]

| \(C_{19} \) | \(\frac{4}{15} \left< \left(\alpha_{11}^0 + 2 \alpha_{13}^0 \right) - \sqrt{2} \left(\alpha_{11}^0 + \sqrt{\frac{3}{5}} \alpha_{13}^0 - 3 \sqrt{\frac{3}{5}} \alpha_{33}^0 \right) \right| \)
| \(\left| \left(\alpha_{11}^0 - \alpha_{33}^0 \right) - \frac{1}{2 \sqrt{3}} \left(\alpha_{11}^0 + 4 \sqrt{\frac{3}{5}} \alpha_{13}^0 + 3 \sqrt{\frac{3}{5}} \alpha_{33}^0 \right) \right| \) |
| \(-\frac{\sqrt{2}}{5} \left< \left(\alpha_{11}^0 + 2 \alpha_{13}^0 \right) + \frac{1}{\sqrt{2}} \left(\alpha_{11}^0 + \sqrt{\frac{3}{5}} \alpha_{13}^0 - 3 \sqrt{\frac{3}{5}} \alpha_{33}^0 \right) \right| \)
| \(\left| \left(\alpha_{11}^0 - \frac{1}{2 \sqrt{3}} \alpha_{13}^0 + 3 \sqrt{\frac{3}{5}} \alpha_{33}^0 \right) \right| \) |

| \(C_{14} \) | \(-\frac{4 \sqrt{3}}{5} \left< \left(\alpha_{11}^0 - \alpha_{33}^0 \right) - \frac{1}{2 \sqrt{3}} \left(\alpha_{11}^0 + 4 \sqrt{\frac{3}{5}} \alpha_{13}^0 + 3 \sqrt{\frac{3}{5}} \alpha_{33}^0 \right) \right| \)
| \(\left| \left(\alpha_{11}^0 - 2 \sqrt{\frac{3}{5}} \alpha_{13}^0 + 3 \sqrt{\frac{3}{5}} \alpha_{33}^0 \right) \right| \) |
FIGURES
Fig. 1
$\pi^+ p \rightarrow \pi^+ \pi^-
1170 \text{ MeV/c}
135 \text{ EVENTS}$
$\frac{d\alpha}{d\cos \theta}$ (arb per interval of 0.4 in $\cos \theta$)
1.22 BeV/c
78 events
ref. 2

1.39 BeV/c
74 events
ref. 2

1.59 BeV/c
40 events
ref. 3

2.08 BeV/c
60 events
ref. 4

2.35
-2.90 BeV/c
66 events
ref. 5

Fig. 11b
FIGURE CAPTIONS

Fig. 1. Schematic diagram of the beam optics. A mass spectrometer, not shown in the diagram, is used in the π^+ beam to separate π^+ mesons from protons.

Fig. 2. The distributions in the missing neutral mass (using unfitted quantities) for events which fit either of the reactions $\pi^+p \rightarrow \pi^+\pi^-\pi^0$ (or γ) with a $\chi^2 < 8.6$.
 a. 1170 MeV/c incident π^+
 b. 1050 MeV/c incident π^+
 c. 1170 MeV/c incident π^-

Fig. 3. The $2C \chi^2$ distribution of the 273 events for reaction (3) (solid lines). The dashed lines represent the "theoretical" $2C \chi^2$ distribution normalized to 273 events.

Fig. 4. The distributions in the invariant mass of the $\pi^+\pi^-\pi^0$ (using unfitted quantities) for events in Fig. 2 for which M^2 (missing neutral) > 0.010 BeV2. There are two pions of the same charge in the final state; only that combination of M^2 ($\pi^+\pi^-\pi^0$) which is closer to $M_{\eta}^2 = 0.30$ BeV2 has been plotted.
 a. 1170 MeV/c incident π^+
 b. 1050 MeV/c incident π^+
 c. 1170 MeV/c incident π^-

Fig. 5. Variation of $\sigma(\pi^+p \rightarrow \pi^+\pi\eta; \eta \rightarrow \pi^+\pi^-\pi^0)$ as a function of incident beam momentum. The π^+ data points are indicated by black dots; the π^- data points by open circles. See Table II for references. The $u=0$ curve is the result of the threshold para-
meterization of the \(\pi^+ \) data (see Section VB). The other solid curves are the results of the modified parameterization of Section VC. The dashed curve is the \(u=67 \) curve for the \(\pi^- \) data.

Fig. 6. Mnemonic (non-relativistic) diagram in velocity space depicting the two-step reaction \(\pi_B p \rightarrow \eta \tilde{N}; \tilde{N} \rightarrow \pi_B p_D \). In the overall center of mass \(\pi_B \) has orbital angular momentum \(\vec{\varepsilon} \) and linear momentum \(\vec{k} \) along the z-axis; \(\eta \) has orbital angular momentum \(\vec{\varepsilon} \) and linear momentum \(\vec{p} \). The two vectors, \(\vec{k} \) and \(\vec{p} \), define the production plane. The normal to the production plane, \(\vec{k} \times \vec{p} \), is the y-axis; \(\vec{x} = \vec{y} \times \vec{z} \). In the \(\tilde{N} \) rest frame the z-axis is in the production plane at an angle \(\chi \) from the line of flight of the eta; \(\cos \chi = \hat{\vec{p}} \cdot \hat{\vec{k}} \). The \(\tilde{N} \) of mass \(M \) and total angular momentum, \(\vec{J} \), decays into \(\pi_D \) and \(p_D \) with orbital angular momentum \(\vec{L} \) and linear momentum \(\vec{q} \); \(\cos \theta = \hat{q} \cdot \hat{\vec{x}} \), \(\phi = \arctan \left[\hat{q} \cdot \hat{\vec{n}} / \hat{q} \cdot \hat{\vec{x}} \right] \). The total angular momentum of the system is \(\hat{\vec{J}} \); the total energy is \(E \).

Fig. 7. Production Dalitz plots and mass squared projections. The curves are given by Eqs. (15) and (16) using our best fit parameters.

a. 1170 MeV/c incident \(\pi^+ \)

b. 1050 MeV/c incident \(\pi^+ \)

c. 1170 MeV/c incident \(\pi^- \)

Fig. 8. Production angular distributions in the center of mass. The curves are given by Eq. (12) using our best fit parameters.
Fig. 9. \(\bar{N} \) azimuthal decay angular distributions. The curves are given by Eq. (13) using our best fit parameters.

- a. 1170 MeV/c incident \(\pi^+ \)
- b. 1050 MeV/c incident \(\pi^+ \)
- c. 1170 MeV/c incident \(\pi^- \)

Fig. 10. \(\bar{N} \) polar decay angular distributions. The curves are given by Eq. (14) using our best fit parameters.

- a. 1170 MeV/c incident \(\pi^+ \)
- b. 1050 MeV/c incident \(\pi^+ \)
- c. 1170 MeV/c incident \(\pi^- \)

Fig. 11. Mass and angular distributions for the reaction \(\pi^+ p \rightarrow \pi^+ p\eta \)
published in references (2-7). The curves are those given by our parameterization of Section VC, and are normalized to the total number of events.

- a. Mass distributions
- b. Angular distributions
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.