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Sparse ACEKF for phase reconstruction

Zhong Jingshan,1,∗Justin Dauwels,1 Manuel A. Vázquez,2 and Laura
Waller3

1Nanyang Technological University, School of Electrical and Electronic Engineering,
Singapore 639798

2Universidad Carlos III de Madrid, Depto. de Teorı́a de la Señal y Comunicaciones, Madrid,
Spain.

3Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley

∗zhongjingshan@hotmail.com

Abstract: We propose a novel low-complexity recursive filter to effi-
ciently recover quantitative phase from a series of noisy intensity images
taken through focus. We first transform the wave propagation equation
and nonlinear observation model (intensity measurement) into a complex
augmented state space model. From the state space model, we derive a
sparse augmented complex extended Kalman filter (ACEKF) to infer the
complex optical field (amplitude and phase), and find that it converges under
mild conditions. Our proposed method has a computational complexity of
NzN logN and storage requirement of O(N), compared with the original
ACEKF method, which has a computational complexity of O(NzN3) and
storage requirement of O(N2), where Nz is the number of images and
N is the number of pixels in each image. Thus, it is efficient, robust and
recursive, and may be feasible for real-time phase recovery applications
with high resolution images.

© 2013 Optical Society of America

OCIS codes: (100.5070) Phase retrieval; (100.3010) Image reconstruction techniques.
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1. Introduction

When light propagates, its amplitude and phase evolve according to the wave equation. These
amplitude and phase perturbations contain important information about the complex-field in the
original (focal) plane. Intensity can be measured easily; however, phase cannot be measured
directly and it needs to be reconstructed from intensity images with computational methods.
Most solutions for phase recovery do not explicitly account for noise in the measurement, and
thus typical methods are not applicable in high noise situations, such as in X-ray imaging or
photon-starved situations. Recently, Kalman filters have been used to estimate phase from very
noisy intensity images (signal-to-noise ratio less than one) [1]; however the method is very
computationally intensive and impractical for images with large pixel counts (e.g. 1 megapixel
or greater). In this paper, we solve these problems by developing efficient inference methods
for recovering the phase from a set of defocus intensity images, which can be captured either
sequentially by moving camera along the optical axis, or all at once by using various focal stack
collection methods [2, 3]. Such methods can be useful for applications in medical imaging, neu-
roscience, and materials science, where low noise images are difficult to obtain. Furthermore,
since our proposed method is recursive (not iterative), it has the ability to estimate phase in
real-time during the measurement sequence, progressively improving the estimate as each new
image is captured.

Traditional methods for recovering phase involve complicated interferometric setups, so
there is a significant experimental advantage to methods such as ours, which only require a
set of intensity images taken with different amounts of defocus. One of the originally pro-
posed algorithms, the Gerchberg-Saxton(GS) method [4, 5], uses only two images and treats
the problem as convex (which it is generally not), iterating back and forth between two domains
to reduce error. In [6], a generalization of the GS method is given for cases of multiple defo-
cus images. These methods tend to be strongly sensitive to the noise in the last image, although
techniques exist for averaging at each iteration. Direct methods generally linearize the problem,
either by assuming that the object is weak or that the propagation distance is small. It allows
one to exploit the Transport of Intensity Equation (TIE) [7], which reveals relationship between
phase and the first derivative of intensity with respect to the optical axis. The first derivative
of intensity is usually approximated by finite difference method [8, 9], and it is not robust to
severe noise. A few statistical approaches have been proposed as well. An approximation to
the maximum likelihood estimator is derived in [10, 11]. However, it easily gets stuck in local
maxima, and sometimes leads to poor results.

In [1], an augmented complex extended Kalman filter (ACEKF) was used to solve for phase
in the presence of significant noise corruption. The Kalman filter is a well-known recursive
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algorithm for estimating dynamically changing quantities from a set of noisy measurements.
In the linear case, with Gaussian noise statistics, the Kalman filter is the optimal estimation
method. However, intensity is a nonlinear measure of complex field, and noise in images gen-
erally follows Poisson statistics, so the solution will not be provably optimal. Extended Kalman
filters add a linearization step in order to account for nonlinear measurements. Further, we use
a complex EKF in order to deal with complex numbers. The resulting ACEKF outperforms
many previous algorithms, at the cost of very high computational complexity of O(NzN3) and
storage requirement of O(N2). The memory storage requirements are particularly limiting - for
example, an image with pixel counts on the order of megapixels will require terabytes of data to
be stored and processed - thus, the algorithm is infeasible for large images and impractical for
real-time applications. In [12], a diagonalized complex extended Kalman filter (diagonalized
CEKF) was proposed to alleviate those issues, without jeopardizing the reconstruction accu-
racy. The diagonalized CEKF is iterative: it needs to cycle through the set of intensity images
repeatedly, yielding a more accurate phase reconstruction after each cycle. The computational
complexity increases with each cycle.

The sparse ACEKF proposed here uses the same augmented state space model as ACEKF.
With the assumption that the phase is small, we derive theorems to simplify the update equa-
tions of ACEKF. It eventually results in a low-complexity noise-robust phase reconstruction al-
gorithm. The proposed method has a computational complexity of NzN logN, while ACEKF re-
quires NzN3. However, our method still achieves better phase reconstruction than both ACEKF
and the diagonalized CEKF.

This paper is organized as follows. In the next section, we turn the propagation and observa-
tion models from scalar wave optics into an augmented state space model in signal processing.
In Section 3, we derive the proposed sparse ACEKF algorithm. In Section 4, we analyze the
convergence and stability of the new ACEKF. In Section 5, we compare results of different
methods using synthetic and experimental data. We offer concluding remarks in Section 6.

2. Problem description and state space model of the optical field

We aim to estimate the 2D complex-field A(x,y,z0) at the focal plane z0, from a sequence of
noisy intensity images I(x,y,z) captured at various distance z0,z1,z2, ...,zNz . We assume a linear
medium with homogeneous refractive index and coherent (laser) illumination, such that the
complex-field at z0 fully determines the complex-field at all other planes. The complex optical
field at z is A(x,y,z) = |A(x,y,z)|eiφ(x,y,z), where |A(x,y,z)| is the amplitude, and φ(x,y,z) is the
phase. Propagation is modeled by the homogeneous paraxial wave equation:

∂A(x,y,z)
∂ z

=
iλ
4π

∇
2
⊥A(x,y,z), (1)

where λ is the wavelength of the illumination, and ∇⊥ is the gradient operator in the lateral
(x,y) dimensions. The noisy measurements I(x,y,z) usually adhere to a (continuous) Poisson
distribution:

p[I(x,y,z)|A(x,y,z)] = e−γ|A(x,y,z)|2 (γ|A(x,y,z)|2)I(x,y,z)

I(x,y,z)!
, (2)

where γ is the photon count detected by the camera. The measurement at each pixel I(x,y,z) is
assumed statistically independent of any other pixel (conditioned on the optical field A(x,y,z)).

We discretize the optical field A(x,y,z) as a raster-scanned complex column vector an, and
similarly discretize the intensity measurement I(x,y,z) as column vector In. We denote by
b(u,v,z) the 2-D Fourier transform of A(x,y,z). The column vector bn is again raster-scanned
from b(u,v,z), and hence can be expressed as bn = Kan, where K is the discrete Fourier trans-
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form matrix. Since K is unitary, we can write KKH = KHK = U (with normalization), where
U is the identity matrix or unit matrix and KH denotes the hermitian of K.

Let us assume the distance between two consecutive planes is a constant ∆z. Then, we can
define the propagation matrix from zn−1 to zn as [13]:

H = diag
(

exp
[
− iλπ

(u2
1

L2
x
+

v2
1

L2
y

)
∆z
]
, . . . ,exp

[
− iλπ

(u2
M

L2
x
+

v2
N

L2
y

)
∆z
])

, (3)

where Lx and Ly are the width and height of the image, respectively.
The relation between two images with distance ∆z in Fourier domain can be written as:

bn = Hbn−1. (4)

In order to fit within the Kalman filter framework, we approximate the Poisson observation
model as in Eq. (2) with a Gaussian distribution of the same mean and covariance. In particular,
we consider the approximate observation model:

In = γ |an|2 +v, (5)

where v is a Gaussian vector with zero mean and covariance R = γ diag(a∗n)diag(an). Here a∗n
denotes the complex conjugate of an, and diag(a∗n) is a diagonal matrix with its corresponding
diagonal entries equal to the elements in the vector a∗n.

The nonlinear observation model in Eq. (5) is linearized as [14]:

In = γ |ân|2 + γ diag(â∗n)(an− ân)+ γ diag(ân)(a∗n− â∗n)+v, (6)

where ân is the state predicted from the previous n−1 observations, and Eq. (6) is the first order
Taylor series expansion of Eq. (5) with respect to ân.

Summarizing, the augmented state space model is given as:

state:
[

bn
b∗n

]
=

[
H 0
0 H∗

][
bn−1
b∗n−1

]
(7)

observation: In =
[
Jn J∗n

][bn
b∗n

]
−γ |ân|2 +v, with v∼ (0,R), (8)

where

R = γ diag(â∗n)diag(ân) and Jn = γ diag(â∗n)K
H . (9)

We adopt the augmented state space model because the ACEKF with the state augmented
outperforms CEKF in both estimation error and convergence [14]. If the state is not augmented,
such as in CEKF algorithm, the covariance E[bnbH

n ] is not sufficient for a complete description
of the complex state. Since the state in ACEKF is augmented from bn to [bn b∗n]T , it intro-
duces both the covariance E[bnbH

n ] and the pseudo-covariance E[bnbT
n ]. Intuitively, E[bnbH

n ]
and E[bnbT

n ] together provide a more comprehensive statistical description of the complex state.

3. State estimation by sparse augmented complex extended Kalman filter

The state covariance matrix of the augmented state has the form:

Sn =

[
SQ

n SP
n

(SP
n )
∗ (SQ

n )
∗

]
(10)
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From the update equations of ACEKF [1, 15], we have the following steps:
1. Initialize: b0, SQ

0 , and SP
0 .

2. Predict:

ŜQ
n = HSQ

n−1HH , (11)

ŜP
n = HSP

n−1H. (12)

3. Update:

SQ
n = ŜQ

n − (ŜQ
n JH

n + ŜP
n JT

n )(JnŜQ
n JH

n +JnŜP
n JT

n +J∗n(Ŝ
Q
n )
∗JT

n +J∗n(Ŝ
P
n )
∗JH

n +

R)−1(JnŜQ
n +J∗n(Ŝ

P
n )
∗), (13)

SP
n = ŜP

n − (ŜQ
n JH

n + ŜP
n JT

n )(JnŜQ
n JH

n +JnŜP
n JT

n +J∗n(Ŝ
Q
n )
∗JT

n +J∗n(Ŝ
P
n )
∗JH

n +

R)−1(JnŜP
n +J∗n(Ŝ

Q
n )
∗), (14)

Gn =(SQ
n JH

n +SP
n JT

n )R
−1, (15)

bn = b̂n +Gn(In− γ |ân|2). (16)

The size of SQ
n or SP

n is N2, where N is the total number of the pixels in the image. Thus,
the covariance matrix dominates the memory requirements. The inversion of the covariance
matrix has a computational complexity of O(N3) in each step. Both the storage requirement
and computational burden make the above update algorithm impractical for real applications.
Here we make some mild assumptions and derivations, resulting in a low-complexity algorithm
with reduced storage requirement. After some derivations (see more in Appendices A and B),
we prove Lemma 1 as well as Theorems 1 and 2. Theorem 1 is derived from the ACEKF update
Eqs. (11)-(14). It shows that if the covariance matrix at step n−1 has the form SQ

n−1 =Qn−1 and
SP

n−1 = Pn−1E, where Qn−1 and Pn−1 are diagonal, then the covariance matrix at step n has the
same form as that of step n−1 (see Eqs. (23)-(24)). Therefore, once the first covariance matrix
is initialized as SQ

0 = Q0 and SP
0 = P0E, then the subsequent matrices will keep the same form.

Since the matrices in Theorem 1 are diagonal, the computational complexity in Theorem 1 is
O(N). Theorem 2, derived from the Eqs. (15)-(16), provides a new Kalman gain and update
formula using the diagonal matrices Qn and Pn.

Lemma 1. If a matrix M is diagonal and its diagonal entries are rotationally symmetric in
2-D, then EME = M, where E = KKT, and K is the Discrete Fourier Transform Matrix.

Theorem 1. If

SQ
n−1 = Qn−1 (17)

SP
n−1 = Pn−1E, (18)

where Qn−1 and Pn−1 are diagonal, then we derive from the ACEKF update Eqs. (11)-(16) that

#188002 - $15.00 USD Received 4 Apr 2013; revised 6 Jun 2013; accepted 2 Jul 2013; published 22 Jul 2013
(C) 2013 OSA 29 July 2013 | Vol. 21,  No. 15 | DOI:10.1364/OE.21.018125 | OPTICS EXPRESS  18129



the covariance matrix can be updated as follows

Predict:

Q̂n = Qn−1 (19)

P̂n = HPn−1H (20)
Update:

Qn = Q̂n− (Q̂n + P̂n)(Q̂n + P̂n +(Q̂n)
∗+(P̂n)

∗+qI)−1(Q̂n +(P̂n)
∗) (21)

Pn = P̂n− (Q̂n + P̂n)(Q̂n + P̂n +(Q̂n)
∗+(P̂n)

∗+qI)−1(P̂n +(Q̂n)
∗) (22)

SQ
n = Qn (23)

SP
n = PnE, (24)

where Qn and Pn are diagonal, and q = 1
γ
.

Theorem 2. The Kalman gain and update formula for the state are

Gn = (SQ
n JH

n +SP
n JT

n )R
−1 = (Qn +Pn)(Jn)

−1q−1. (25)

bn = b̂n +Gn(In− γ |ân|2). (26)

Table 1. Sparse augmented complex extended Kalman filter for estimating a wave field.

(1) Initialization b0, Q0 and P0.
(2) Prediction:

b̂n = Hbn−1 (27)

Q̂n = Qn−1 (28)

P̂n = HPn−1H (29)

(3) Update:

ân = KH b̂n (30)

Qn = Q̂n− (Q̂n + P̂n)(Q̂n + P̂n +(Q̂n)
∗+(P̂n)

∗+qI)−1(Q̂n +(P̂n)
∗) (31)

Pn = P̂n− (Q̂n + P̂n)(Q̂n + P̂n +(Q̂n)
∗+(P̂n)

∗+qI)−1(P̂n +(Q̂n)
∗) (32)

bn = b̂n +(Qn +Pn)(Jn)
−1q−1(In− γ |ân|2). (33)

The resulting algorithm, referred to as the sparse ACEKF, is summarized in Table 1. Matrices
Qn and Pn are diagonal, and hence they can be stored as two vectors. The storage burden
of Eqs. (13)-(14) in the update step is reduced from N2 to N. The inverse of Jn in Eq. (33)
can be computed by Fast Fourier Transform (FFT), which has a computational complexity of
O(N log(N). Since Qn and Pn are diagonal, the matrix multiplications and inversions in Eqs.
(31)-(32) have a computational complexity of O(N). The overall computational complexity of
the sparse ACEKF is O(NzN log(N)), limited by the complexity of FFT.
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4. Analysis of the convergence of the augmented complex extended Kalman filter

The convergence of ACEKF, for the complex state space model, has not been well analyzed
in the literature. However, the convergence and stability of the extended Kalman filter (EKF)
for the real state is well studied [16–18]. Thus we first convert the ACEKF state space model
into its equivalent dual form as a real state space model (EKF), then we use existing methods
to analyze the convergence of the dual form.

We follow [14] to derive the dual real form of the ACEKF state space model (7)-(8). Define

M =
1
2

[
U U
− jU jU

]
, (34)

where U is identity matrix. When multiplied by M, a complex variable is converted to its cor-
responding real form: [

Re(bn)
Im(bn)

]
= M

[
bn
b∗n

]
, (35)

where Re(bn) and Im(bn) are the real and imaginary parts of bn, respectively. The complex
model (7)-(8) becomes a real value model:

state:
[

Re(bn)
Im(bn)

]
= An

[
Re(bn−1)
Im(bn−1)

]
, (36)

observation: In = Cn

[
Re(bn)
Im(bn)

]
−γ |ân|2 +v, (37)

where

An = M
[

H 0
0 H∗

]
M−1, (38)

Cn =
[
Jn J∗n

]
M−1. (39)

By applying the theory of EKF convergence in [16] to our real value model, we obtain The-
orem 3 which provides the convergence and stability of the model.

Theorem 3. The estimation error of the EKF algorithm in Eqs. (36)-(37) is bounded, and hence
also the estimation error of ACEKF algorithm for Eqs. (7)-(8) is bounded, when the initial
estimation error and the noise are small enough, and the EKF model satisfies the following
conditions [16]:

1. There exist positive numbers ā, c̄, s̄,s,v > 0, such that for every n≥ 0:

‖An‖ ≤ ā, (40)
‖Cn‖ ≤ c̄, (41)
sU≤ Sn ≤ s̄U, (42)
vU≤ v. (43)

2. An is non-singular for every n.

3. The linearization at Eq. (6) has a bounded error.
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In Theorem 3, ‖.‖ denotes the spectral norm of matrices. Assuming the initial estimation
error and the noise are small enough, let us check each condition of Theorem 3. From the def-
inition in Eq. (3), the propagation matrix H is non-singular and determined by the propagation
distance ∆z. Since M is full rank, the matrix An given in Eq. (38) is bounded and non-singular.
Therefore, the inequality (40) and the second condition of Theorem 3 are satisfied. The lin-
earization in Eq. (6) is a first-order truncation of Taylor series expansion of a quadratic function.
Therefore, the linearization has a bounded error and the real observation matrix Cn of Eq. (37)
is bounded as well, as required by the inequality (41) and the third condition of Theorem 3.
The matrix R is the covariance matrix of the Poisson noise in Eq. (5), and it is bounded as the
amplitude of the state is bounded.

The inequality (42) requires the covariance matrix to be bounded for every n. In [16], it is
shown that the boundedness of the covariance matrix is closely related to observability and
detectability properties of the EKF model. However, it is difficult to prove the observability
of the model directly, because An and Cn are based on the observed data at each step. We
calculate the rank of the observability matrix and the bound on the covariance matrix by testing
our algorithm on the synthetic data (see Data Set 2 in section 5). We initialize the covariance
matrix Q0 and P0 in Table 1 with 30 different values. The matrix Q0 is initialized as qU (U is
identity matrix), with q ranging from 70 to 7000, and P0 is initialized as pU, with p ranging
from 50 to 5000. Figure 1 shows that the minimum singular value of the observability matrix
is larger than zero, so the observability matrix is full rank at each step. Figures 2 and 3 show
the maximum and minimum singular value of the covariance matrix at each step with different
initializations. The covariance matrix is bounded, as required by inequality (42).
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Initializations
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Fig. 1. Minimum singular value of observability matrix with 30 different initializations of
the covariance matrix Q0 and P0. The matrix Q0 is initialized as qU, with q ranging from
70 to 7000, and P0 is initialized as pU, with p ranging from 50 to 5000.
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Fig. 2. Maximum singular value of covariance matrix with 30 different initializations of p
and q in the covariance matrix.
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Fig. 3. Minimum singular value of covariance matrix with 30 different initializations of p
and q in the covariance matrix.

5. Experimental results

We consider three sets of data to assess the performance the augmented Kalman filter. Data
Set 1 consists of 100 images of size 100×100 pixels artificially generated to simulate a com-
plex field propagating from focus in 0.5 µm steps over a distance of 50 µm with illumination
wavelength of 532 nm. Pixels are corrupted by Poisson noise so that, on average, each pixel
detects γ = 0.998 photons. Data Set 2 comprises 50 images of size 150×150 pixels acquired
by a microscope. The wavelength was again 532 nm, and the defocused intensity images were
captured by moving the camera axially with a step size of 2 µm over a distance of 100 µm.
Data Set 3 has 101 images of size 492×656 pixels acquired by a microscope. The light source
is partially coherent, and filtered by a narrow-band color filter of center wavelength 633nm. The
images were captured by moving the camera axially with a step size of 2 µm. Figure 4 shows
the images of synthetic data (Data Set 1) and experimental data (Data Set 2 and Data Set 3).

(a) (b) (c)

Fig. 4. (a) Data Set 1: synthetic images with strong noise (100× 100 pixels with size of
1µm×1µm). (b) Data Set 2: experimental data acquired by a microscope (150×150 pixels
with size of 2µm×2µm). (c) Data Set 3: experimental data of large size (492×656 pixels
with size of 0.74µm×0.74µm) obtained by a microscope.

5.1. Synthetic data

Table 2 summarizes the results of Data Set 1 using three methods: ACEKF (augmented complex
extended Kalman filter) [1], diagonalized CEKF [12], and the proposed method sparse ACEKF.
The ACEKF method has a high computational complexity of O(NzN3) and storage requirement
of O(N2). In order to alleviate the computational burden of ACEKF, the images are divided into
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independent blocks of size 50×50, but it still takes 1.4×104 seconds by a standard CPU. On
the other hand, the computational complexity of the sparse ACEKF is O(NzN logN), and it
takes 0.40 seconds to process the 100 (full) images, thus giving a speedup factor of 35000x.

As illustrated in Table 2, the computational complexity of the diagonalized CEKF is lower
than that of ACEKF. However, the latter yields better results in terms of phase error. In order
to reduce the error of the diagonalized CEKF, forward and backward sweeps (iterations) are
applied in [12]. However, the iteration increases the computational complexity linearly, and
makes the method no longer recursive. The sparse ACEKF method has an intensity error of
0.0071, and a phase error of 0.0143 (radian). Compared with the diagonalized CEKF, the sparse
ACEKF has the same computational complexity and storage requirement, but returns more
accurate images.

We assess the quality of reconstruction by root mean square error (RMSE). The proposed
sparse ACEKF has an error near to that of ACEKF, while the recovered phase and intensity
images of the sparse ACEKF in Fig. 5 might look better. The images recovered by ACEKF
exhibit a block effect as straight lines crossing the images, whereas the result of sparse ACEKF
is free of such block effect. The sparse ACEKF has a much lower complexity, which avoids the
need of dividing the images into independent blocks. The images recovered by ACEKF and the
diagonalized CEKF contain traces of phase in the intensity images due to errors. However, the
trace of phase is mostly removed in the estimated intensity image from the sparse ACEKF.

Table 2. Comparison of different methods. Each image is divided into 4 blocks of size
50×50 for ACEKF, while the proposed sparse ACEKF and diagonalized CEKF processes
the images without separating into blocks.

Complexity Time[s] Storage Intensity error Phase error [radians]
ACEKF O(NzN3) 1.3×104 O(N2) 0.0091 0.0139

Diagonalized CEKF O(NzN logN) 0.30 O(N) 0.0079 0.0166
Sparse ACEKF O(NzN logN) 0.40 O(N) 0.0071 0.0143

True image ACEKF Diagonalized CEKF Sparse ACEKF
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Fig. 5. Recovered intensity and phase [radian] image from synthetic Data Set 1 by ACEKF,
diagonalized CEKF, and the proposed sparse ACEKF.

5.2. Experimental data

In Fig. 6, we compare the estimated intensity and phase images of Data Set 2 using the ACEKF,
the diagonalized CEKF, and the sparse ACEKF. Stripes in the phase image recovered by the
diagonalized CEKF look darker, while the stripes in the recovered phase image of the sparse
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Fig. 6. Estimated intensity and phase [radians] of Data Set 2 by ACEKF, diagonalized
CEKF, and the proposed sparse ACEKF.

ACEKF method have stronger contrast. In Fig. 7(a), we show the recovered phase of the Data
Set 3 by ACEKF, the diagonalized CEKF, and the sparse ACEKF. The real depth of the sample
in Data Set 3 is around 75± 5nm. The proposed method takes 20.24 seconds to process 101
images of size 492× 656. However, the ACEKF method takes 54.15 hours and each image
is separated into 117 pieces of 50× 50 blocks. In Fig. 7(b), we compare the depth across the
black line of the recovered phase in Fig. 7(a). The sparse ACEKF method shows a result much
closer to the true value, compared to the ACEKF and the diagonalized CEKF. However, the
reconstructed phase image obtained by sparse ACEKF contains low-frequency noise, especially
at the edges. This shadow effect may be attributed to the partial coherence of the light, which is
not incorporated into our model (we assume full coherence). The low frequency issue may be
alleviated through a nonlinear diffusion filter, which we will explore in future work.

ACEKF Diagonalized CEKF Sparse ACEKF
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Fig. 7. (a) Estimated height [nm] for Data Set 3 by ACEKF, diagonalized CEKF, and the
proposed sparse ACEKF. (b) Depth along the black line in (a).
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6. Conclusions

The proposed method efficiently recovers phase and amplitude from a series of noisy defocused
images. Although a constant defocus step size is used for the through-focal series in this paper,
it can be generalized to cases of non-constant step-size. The method can directly deal with
large data sets and high-resolution images because of its low computational complexity and
storage requirement. It can process the images recursively in real-time after the data has been
captured, or even during the capture sequence. For example, with further work, this method
could form the basis for an adaptive phase imaging method, in which the current estimate
of the phase informs the choice of the next measurement plane (defocus distance). Since the
optimal measurement planes will depend on the object itself [19], real-time estimation during
capture could lead to optimization not only of the processing, but also optimization of the
measurement scheme itself. Furthermore, due to the scalability of the wave equations and the
simplicity of the measurement technique, this method could find use in phase imaging beyond
optical wavelengths (for example, X-ray or neutron imaging), where high-quality images are
difficult to obtain and noise is significant and unavoidable.

Appendix A: proof of theorem 1

Predict
If Qn−1 and Pn−1 are diagonal, from the definition of H in Eq. (3) it follows:

P̂n = HPn−1H (44)

Q̂n = HQn−1HH = Qn−1. (45)

Since the propagation marix H is diagonal and its diagonal entries are rotationally symmetric,
from Eq. (11)-(12) and Lemma 1, it follows:

ŜQ
n = HSQ

n−1HH = HQn−1HH = Q̂n (46)

ŜP
n = HSP

n−1H = HPn−1EH = HPn−1HE = P̂nE. (47)

Update
From the update formula in Eqs. (13)-(14), we have

SQ
n = ŜQ

n − (ŜQ
n JH

n + ŜP
n JT

n )(JnŜQ
n JH

n +JnŜP
n JT

n +J∗n(Ŝ
Q
n )
∗JT

n +J∗n(Ŝ
P
n )
∗JH

n +R)−1(JnŜQ
n +J∗n(Ŝ

P
n )
∗).

(48)

From Eq. (9), Jn = γ diag(â∗n)KH . Let us define D = γ diag(â∗n), so that Jn = DKH . It follows:

SQ
n = ŜQ

n − (ŜQ
n KDH + ŜP

n K∗DT )(DKH ŜQ
n KDH +DKH ŜP

n K∗DT +D∗KT (ŜQ
n )
∗K∗DT

+D∗KT (ŜP
n )
∗KDH +qDKHKDH)−1(DKH ŜQ

n +D∗KT (ŜP
n )
∗), (49)

where q = 1
γ
.

Because D is diagonal matrix, it has DT = D and DH = D∗.

SQ
n = ŜQ

n − (ŜQ
n K+ ŜP

n K∗D(D∗)−1)(KH ŜQ
n K+KH ŜP

n K∗D(D∗)−1 +D−1D∗KT (ŜQ
n )
∗K∗D(D∗)−1

+D−1D∗KT (ŜP
n )
∗K+qKHK)−1(KH ŜQ

n +D−1D∗KT (ŜP
n )
∗). (50)

Since in our phase recovery problem the value of phase is small, here we consider the approxi-
mation D∗D−1 ≈ I. Future research will explore the influence of large phase values.

SQ
n = ŜQ

n − (ŜQ
n K+ ŜP

n K∗)(KH ŜQ
n K+KH ŜP

n K∗+KT (ŜQ
n )
∗K∗

+KT (ŜP
n )
∗K+qKHK)−1(KH ŜQ

n +KT (ŜP
n )
∗). (51)
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Taking KH and K out of the inverse term yields

SQ
n = ŜQ

n − (ŜQ
n K+ ŜP

n K∗)(KH(ŜQ
n + ŜP

n K∗KH +KKT (ŜQ
n )
∗K∗KH +KKT (ŜP

n )
∗+qI)K)−1

(KH ŜQ
n +KT (ŜP

n )
∗). (52)

It follows:

SQ
n = ŜQ

n − (ŜQ
n + ŜP

n K∗KH)(ŜQ
n + ŜP

n K∗KH +KKT (ŜQ
n )
∗K∗KH +KKT (ŜP

n )
∗+qI)−1

(ŜQ
n +KKT (ŜP

n )
∗). (53)

Likewise, we can derive a similar expression for the update of SP
n :

SP
n = ŜP

n − (ŜQ
n + ŜP

n K∗KH)(ŜQ
n + ŜP

n K∗KH +KKT (ŜQ
n )
∗K∗KH +KKT (ŜP

n )
∗+qI)−1

(ŜP
n +KKT (ŜQ

n )
∗). (54)

From Lemma 1 and Eqs. (46)-(47), we obtain:

SQ
n = Q̂n− (Q̂n + P̂nEE)(Q̂n + P̂nEE+E(Q̂n)

∗E+E(P̂n)
∗E+qI)−1(Q̂n +E(P̂n)

∗E) (55)

SP
n = P̂nE− (Q̂n + P̂nEE)(Q̂n + P̂nEE+E(Q̂n)

∗E+E(P̂n)
∗E+qI)−1(P̂nE+E(Q̂n)

∗EE).
(56)

We initialize Q0 and P0 as a scalar times the identity matrix. From Eqs. (44)-(45) and (55)-
(56), the covariance matrices remain rotationally symmetric during the update. From Lemma
1, it follows:

SQ
n = Q̂n− (Q̂n + P̂n)(Q̂n + P̂n +(Q̂n)

∗+(P̂n)
∗+qI)−1(Q̂n +(P̂n)

∗) (57)

SP
n = P̂nE− (Q̂n + P̂n)(Q̂n + P̂n +(Q̂n)

∗+(P̂n)
∗+qI)−1(P̂nE+(Q̂n)

∗E)

= (P̂n− (Q̂n + P̂n)(Q̂n + P̂n +(Q̂n)
∗+(P̂n)

∗+qI)−1(P̂n +(Q̂n)
∗))E. (58)

Appendix B: proof of theorem 2

In Eq. (15), the Kalman gain for the augmented Kalman filter is given as:

Gn = (SQ
n JH

n +SP
n JT

n )R
−1

= (SQ
n JH

n +SP
n JT

n )(J
H
n )
−1(Jn)

−1q−1

= (SQ
n +SP

n E)(Jn)
−1q−1

= (Qn +Pn)(Jn)
−1q−1. (59)
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