Lawrence Berkeley National Laboratory
Recent Work

Title
OMEGA PRODUCTION IN pp -^-pp Jt+jt~rt| AT 6.6 GeV/c

Permalink
https://escholarship.org/uc/item/9n89b2cd

Authors
Colton, Eugene
Gellert, Eugene.

Publication Date
1969-10-01
Submitted to The Physical Review

OMEGA PRODUCTION IN $pp \rightarrow pp \pi^+ \pi^- \pi^0$ AT 6.6 GeV/c

Eugene Colton and Eugene Gellert

October 1969

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
OMEGA PRODUCTION IN $pp \rightarrow pp \pi^+ \pi^- \pi^0$ AT 6.6 GeV/c

Eugene Colton and Eugene Gellert

Lawrence Radiation Laboratory
University of California, Berkeley, California 94720

October 1969

ABSTRACT

We present a study of the 3π system in $pp \rightarrow pp \pi^+ \pi^- \pi^0$ at 6.6 GeV/c. Both $\eta(549)$ and $\omega(783)$ production are observed. The Dalitz plot is displayed for the $pp\omega$ events, in addition to several other experimental distributions. There is no evidence for $p\omega$ resonances. The $pp\omega$ events have been assigned separately to the six possible multiperipheral diagrams on the basis of criteria in the four-momentum transfers and c.m. longitudinal momenta, respectively. In addition we discuss the means of achieving an effective diagram separation.

I. INTRODUCTION

We have analyzed 6098 events of the type

$$p + p \rightarrow p + p + \pi^+ + \pi^- + \pi^0$$

at a laboratory momentum of 6.6 GeV/c. The data were obtained in the Lawrence Radiation Laboratory's 72-inch liquid-hydrogen bubble chamber. The experimental details can be found elsewhere.1,2 The cross section for reaction (1) is found to be 2.15 ± 0.13 mb at 6.6 GeV/c. Reaction (1) is dominated by $\Delta(1238)$ production3 and, to a lesser extent, by vector-meson production. Vector-meson production has been reported in proton-proton collisions for beam momenta between 4 and 10 GeV/c.4-10
In this work we present a study of $\omega(783)$ production. Since little data on ω production in proton-proton interactions has been reported in the intermediate-energy range, we present the data with the hope that they will supply some understanding of the production mechanisms responsible for the $pp\omega$ intermediate state.

In Section II we discuss the 3π system and the vector-meson production in reaction (1). In Section III we present our conclusions.

II. DISCUSSION

The spectrum of 3π effective mass for the 6098 examples of reaction (1) is displayed in Fig. 1. Both $\eta(549)$ and $\omega(783)$ meson production are observed. We have performed a fit of the $M^2(\pi^+\pi^-\pi^0)$ spectrum to Gaussians for the η and ω resonances, plus a slowly varying background, in order to determine the respective cross sections. The cross sections for $pp\eta$ and $pp\omega$ are presented in Table I along with those values determined from other experiments.⁴⁻¹⁰ The tabulated results refer only to the $pp\pi^+\pi^-\pi^0$ final state. Above 5 GeV/c the $pp\eta$ and $pp\omega$ cross sections appear relatively constant if the different methods of determination are considered.

The 3π mass spectra for events occurring in the three denoted regions of 3π c.m. longitudinal momenta are given in Figs. 2(a-c). Figures 2(a-c) indicate that the ω signal/noise ratio increases with the magnitude of the 3π c.m. longitudinal momenta. Another enhancement is present in Fig. 2(b) in the region of 1000 MeV. We estimate by eye that no more than 100 events or 35 μb is represented in this enhance-
ment. However, the maximum cross section to be expected for $\Phi(1019)$ production in this final state is no more than 3 or 4 μb so the major part of this effect must be due to other causes.

The high background present under all of the peaks occurring in Figs. 1 and 2 precludes any further analysis of the smaller effects, so we restrict ourselves henceforth to a study of ω production in the reaction.

$$p + p \rightarrow p + p + \omega$$

We define the ω events to be those 671 events with $0.76 < M(\pi^+ \pi^- \pi^0) < 0.82$ GeV. The non-ω background in this mass slice is roughly 40% and does contain $\Delta^{++}\pi^- \pi^0$ events. The $pp\omega$ Dalitz plot is presented in Fig. 3. The Dalitz plot is not uniformly populated: the points tend to cluster along the boundaries of low $M^2(\omega\pi)$. The projection of $p\omega$ mass is given in Fig. 4. Two combinations are plotted for each event. There does not appear to be any significant evidence for resonances in the $p\omega$ system. The single particle four-momentum transfer distributions for the $pp\omega$ events are given in Fig. 5. Figure 5(a) is the distribution of the lower of the two possible values of t (we define t to be positive in the physical region) from the beam or target proton to an outgoing proton. Two combinations are plotted for each event. This distribution peaks at low values of t. Figure 5(b) is the distribution of t from the beam proton to the ω. Although Fig. 5(b) does peak at low values of t it is not exemplary of a very peripheral t distribution.
The peripheral nature of the ppω data at 6.6 GeV/c and the apparent absence of resonances in the ω system, in addition to the character of the ppω Dalitz plot, suggest that ω production is proceeding via some multiperipheral process [see Fig. 6(a)]. We would expect the dominant process to involve production of peripheral protons at each outer vertex of Fig. 6(a). Figure 7 displays a t₁ vs t₂ scatter plot where t₁ is the lower of the two possible momentum transfers from the beam or target proton to the ith outgoing proton. The multiperipheral nature of some of the ppω events is clearly seen in Fig. 7 in the region of simultaneously small values of t₁ and t₂.

The six multiperipheral processes that can occur for pp → ppω are shown in Fig. 6(b): they are denoted by Roman numerals I to VI inclusive. Diagrams I and V are restricted to meson exchange, while the processes II, III, IV, and VI require both baryon and meson exchange. One difficulty with a multiperipheral analysis is the assignment of physical events to the correct diagram. The two current methods of diagram separation are the |t_a + t_b| minimum¹⁴ and the P_L3 > P_L4 > P_L5 criteria,¹⁵ where t_a = -(P_1 - P_3)^2 and t_b = -(P_2 - P_5)^2 in the language of Fig. 6(a). The c.m. longitudinal momentum of the ith particle is denoted by P_Li. The results of the two methods of diagram separation as applied to the 671 ppω events are given in Table II for diagrams I through VI. The two different separation procedures yield results consistent with each other. The two diagrams representing only meson exchange (I,V) apparently account for 50-60% of the data.¹⁶
The interference between two amplitudes generally diminishes as one amplitude becomes weaker in comparison with the other. In Tables III [(A) and (B)] we attempt to indicate the magnitude of the interferences between different amplitudes (i.e., diagrams) as a function of the momentum transfers at the external vertices of Fig. 6(a) \((t_a \text{ and } t_b) \). Specifically, the events in Tables III[(A) and (B)] were assigned to the six processes by the \(|t_a + t_b| \) minimum and \(P_{L3} > P_{L4} > P_{L5} \) criteria, respectively. In addition, the numbers within the parentheses represent those events that had simultaneous momentum transfers \(t_a \) and \(t_b \), corresponding to the accompanying processes (also in parenthesis), less than the maximum denoted value. For example, in Table III(A), of the 93 events assigned to diagram I with \(t_a \) and \(t_b \) both less than 0.5 GeV\(^2\), seven events simultaneously had other \(t_a, t_b \) combinations corresponding to diagrams II and III, both less than 0.5 GeV\(^2\). The overlapping events can be interpreted as an indication of possible interferences between processes I, II, and III to the tune of roughly 10% when \(t < 0.5 \text{ GeV}^2 \). As we take events with higher and higher \(t \) values the interference or overlap becomes larger. From Tables III it appears that with enough events one could proceed with a noninterference analysis of \(\omega \) production by simultaneously requiring \(t_a \) and \(t_b \) to be less than 0.5 GeV\(^2\).

III. CONCLUSIONS

At 6.6 GeV/c the cross section for \(\omega \) meson production in the reaction \(pp \to pp \pi^+\pi^-\pi^0 \) is \(180 \pm 23 \text{ \mu b} \). The \(\omega \) production systematically accounts for 6-10% of the cross section of the \(pp3\pi \) reaction from
In the $\pi^+\pi^-\pi^0$ mass spectrum the ω signal/noise ratio increases with the magnitude of the 3π c.m. longitudinal momentum. We have studied the reaction $pp \rightarrow ppm$ by just considering the 671 events in the 3π mass region of 0.76 - 0.82 GeV. The non-ω background in this mass slice is roughly 40% and does contain $\Delta^{++}\pi^+\pi^-\pi^0$ events. The $\rho\omega$ mass spectrum is peaked at low values and shows no evidence for $\rho\omega$ resonances.

The momentum transfer distributions of both protons and ω's are peaked at low values. In addition, many of the events are multiperipheral. As a first approximation at separation the 671 $pp\omega$ events were assigned to the six possible multiperipheral diagrams on the basis of the $|t_a + t_b|$ minimum and $P_{L3} > P_{L4} > P_{L5}$ criteria. The two diagrams requiring only meson exchange in both legs account for 50-60% of the $pp\omega$ events. However, an effective separation of diagrams with overlaps less than 10% of the time requires the momentum transfers in each leg to be simultaneously less than 0.5 GeV2.

ACKNOWLEDGMENTS

We thank Gerald A. Smith and Peter E. Schlein for help and discussions in the early stages of the experiment.
FOOTNOTES AND REFERENCES

* Work supported by the U. S. Atomic Energy Commission.

11. A. B. Wicklund, private communication. At 6.6 GeV/c the cross section for $pp \to pp\phi(1019), \phi \to \Sigma^+$ is no more than 5 mb. In addition, the branching ratio $(\phi \to \Sigma^+ K^0) / (\phi \to 3\pi^-)$ is greater than 1 (see Lawrence Radiation Laboratory Report UCRL-8030-Rev.).

12. J. C. Berlinghieri, M. S. Farber, T. Ferbel, R. Holmes, P. F. Slattery, S. Stone, and H. Yuta, Phys. Rev. Letters 23, 42 (1969). An excess of events in the $\pi^+\pi^-\gamma$ mass spectrum in the region of 1000 MeV for the reaction $K^+p \to K^+\pi^+\pi^-\gamma$ at 12.7 GeV/c is also detected. The authors interpret the excess to be due to A_1 production. However, in our case, no $\rho(765)$ production is observed. Perhaps the excess is due to $\eta'(960)$ production which may occur in the misidentified events $pp \to pp\pi^+\pi^-\gamma$.

13. We find that $\Delta^{++}(1238)$ production accounts for approximately 60% of the $pp\pi^+\pi^-\gamma$ final state.

14. G. Alexander, A. Firestone, C. Fu, G. Goldhaber, and A. Pignotti, Phys. Rev. 177, 2092 (1969). They attempt to fit the data for $K^+p \to K^+\pi^+\gamma$ at 9 GeV/c by a double Regge pole model calculation. Diagram separation procedures are discussed.

16. The reader should bear in mind that this percentage is only a first approximation. Detailed fits of the $pp\phi$ data to specific multi-
peripheral models (e.g., Regge model) are necessary to ascertain the actual percentage of the data assigned to each diagram.
Table I. Experimental cross sections for resonance production in $pp \to pp \pi^+ \pi^- \pi^0$ (in μb).

<table>
<thead>
<tr>
<th>Beam Momentum (GeV/c)</th>
<th>4.4</th>
<th>4.95^5</th>
<th>5.52^6</th>
<th>6^7</th>
<th>6^8</th>
<th>6.6</th>
<th>6.92^9</th>
<th>10^10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>$pp \to pp\eta$</td>
<td>$pp \to pp\omega$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40±20</td>
<td>28±9</td>
<td>20±10</td>
<td>70±50</td>
<td>28±5</td>
<td>29±9</td>
<td>40±10</td>
<td>36±15</td>
</tr>
<tr>
<td></td>
<td>80±30</td>
<td>152±18</td>
<td>110±20</td>
<td>180±50</td>
<td>104±12</td>
<td>180±23</td>
<td>140±40</td>
<td>145±30</td>
</tr>
</tbody>
</table>

Table II. Number of events assigned to each diagram illustrated in Fig. 6(b) for the 671 $pp \to pp\omega$ events at 6.6 GeV/c.

<table>
<thead>
<tr>
<th>Diagram</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>t_a+t_b</td>
<td>_{\text{minimum}}$</td>
<td>200</td>
<td>77</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>$P_{L5} > P_{L4} > P_{L5}$</td>
<td>221</td>
<td>68</td>
<td>79</td>
<td>65</td>
<td>182</td>
<td>56</td>
</tr>
</tbody>
</table>
Table III. Number of events assigned to each diagram [illustrated in Fig. 6(b)] with t_a, t_b both less than the maximum value listed in column 1. The numbers in parenthesis represent those events that also have t_a, t_b combinations, corresponding to the processes (also in parenthesis), both less than the same maximum value.

(A) Diagram separation by $|t_a + t_b|$ minimum criteria.

<table>
<thead>
<tr>
<th>Maximum $t_{a,b}$ value (GeV2)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>33(0)</td>
<td>16(0)</td>
<td>16(0)</td>
<td>11(0)</td>
<td>23(0)</td>
<td>9(0)</td>
</tr>
<tr>
<td>0.5</td>
<td>93(7,II,III)</td>
<td>33(4,I)</td>
<td>35(4,I)</td>
<td>41(4,V)</td>
<td>68(8,IV,VI)</td>
<td>25(2,V)</td>
</tr>
<tr>
<td>0.7</td>
<td>126(24,II,III)</td>
<td>48(13,I)</td>
<td>47(10,I)</td>
<td>48(12,V)</td>
<td>93(26,IV,VI)</td>
<td>39(7,V)</td>
</tr>
<tr>
<td>1.0</td>
<td>154(74,II,III)</td>
<td>54(24,I)</td>
<td>69(28,I)</td>
<td>58(28,V)</td>
<td>125(52,IV,VI)</td>
<td>45(22,V)</td>
</tr>
</tbody>
</table>

(B) Diagram separation by $P_{L2} > P_{L4} > P_{L5}$ criteria.

<table>
<thead>
<tr>
<th>Maximum $t_{a,b}$ value (GeV2)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>33(0)</td>
<td>16(0)</td>
<td>16(0)</td>
<td>11(0)</td>
<td>23(0)</td>
<td>9(0)</td>
</tr>
<tr>
<td>0.5</td>
<td>97(13,II,III)</td>
<td>29(2,I)</td>
<td>32(0)</td>
<td>32(0)</td>
<td>74(21,IV,VI)</td>
<td>21(0)</td>
</tr>
<tr>
<td>0.7</td>
<td>132(39,II,III)</td>
<td>39(10,I)</td>
<td>41(7,I)</td>
<td>37(7,V)</td>
<td>101(43,IV,VI)</td>
<td>33(4,V)</td>
</tr>
<tr>
<td>1.0</td>
<td>164(91,II,III)</td>
<td>44(18,I)</td>
<td>62(24,I)</td>
<td>44(18,V)</td>
<td>141(73,IV,VI)</td>
<td>38(16,V)</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. $\pi^+\pi^-\pi^0$ invariant mass for the 6098 pp \rightarrow pp $\pi^+\pi^-\pi^0$ events at 6.6 GeV/c.

Fig. 2. $\pi^+\pi^-\pi^0$ invariant mass subject to selection on the 3π c.m. longitudinal momentum:
 (a) $P_L < 0.3$ GeV/c
 (b) $0.3 < P_L < 0.6$ GeV/c
 (c) $P_L > 0.6$ GeV/c.

Fig. 3. $\pi\pi\omega$ Dalitz plot for the 671 events with $0.76 < M(\pi^+\pi^-\pi^0) < 0.82$ GeV.

Fig. 4. The $\pi\omega$ invariant mass for the 671 pp \rightarrow ppω events at 6.6 GeV/c.
 Two combinations are plotted for each event.

Fig. 5. Four-momentum transfer distributions for the 671 pp \rightarrow ppω events at 6.6 GeV/c:
 (a) The lower of the two possible values of t from the beam or target proton to an outgoing proton. Two combinations are plotted for each event.
 (b) t from the beam proton to the ω.

Fig. 6. (a) Double peripheral diagram. (b) The six possible multiperipheral diagrams for the reaction pp \rightarrow ppω.

Fig. 7. t_1 vs t_2 scatter plot for the 671 pp \rightarrow ppω events at 6.6 GeV/c.
 t_1 is the lower of the two possible momentum transfers from the beam or target proton to the 1. outgoing proton.
pp \rightarrow pp \pi^+\pi^-\pi^0

6098 events
6.6 GeV/c
Fig. 2.
Fig. 3.

$pp \rightarrow pp\omega$ 6.6 GeV/c

671 events
Fig. 4.
(a)

1 a 3
 b
2 4
 5

(b)

I
\[p_b \] \[p_1 \] \[p_2 \] \[\omega \]
\[p_t \]

IV
\[p_b \] \[\omega \]
\[p_2 \]
\[p_1 \]

II
\[p_b \] \[p_1 \] \[p_2 \] \[\omega \]
\[p_t \]

V
\[p_b \] \[\omega \]
\[p_2 \]
\[p_1 \]

III
\[p_b \] \[\omega \]
\[p_1 \]
\[p_2 \]

VI
\[p_b \] \[p_2 \]
\[p_1 \]
\[\omega \]

Fig. 6.
Fig. 5.
$pp \rightarrow pp\omega$ 6.6 GeV/c

671 events

t_1 (GeV2)

t_2$ (GeV2)

XBL 6910 - 6036

Fig. 7.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.