Title
Pion-Nucleus Complex Refractive Index

Permalink
https://escholarship.org/uc/item/9nf5c8c3

Authors
Radi, H.M.A.
Rasmussen, J.O.
Halim, H.A.

Publication Date
1988-09-01
Submitted to Physical Review C

Pion-nucleus Complex Refractive Index

H.M.A. Radi, J.O. Rasmussen, and H.A. Halim

September 1988

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Pion-nucleus Complex Refractive Index

Hafez M.A. Radi
Physics Department, Faculty of Science, Kuwait University, Kuwait
and Nuclear Science Division, Lawrence Berkeley Laboratory,
University of California
Berkeley, CA 94720

and

John O. Rasmussen
Nuclear Science Division, Lawrence Berkeley Laboratory,
1 Cyclotron Road
Berkeley, CA 94720

and

Huda A. Halim
Physics Department, Faculty of Science,
Kuwait University, Kuwait

ABSTRACT

We find it possible to obtain a formal complex refractive index that
depends on r, k₀, and \(\hat{k} \cdot \hat{r} \) for the pion-nucleus interaction in terms of a full
pion-nucleus optical potential operator including the Lorentz-Lorenz effect
and \(\rho^2(r) \) terms. The proton and neutron densities are taken as Woods-Saxon
form. Numerical calculations are made for a radial propagation of a pion
approaching a lanthanum (A=139, Z=57) with different energies. The real and
imaginary refractive index (which are related to the complex pion wave
number), the optical potential, and the absorption probability density are
displayed as a function of r.

KEYWORD ABSTRACT

NUCLEAR REACTIONS: Pion-nucleus complex refractive index. Pion-nucleus
elastic and inelastic interaction. Pion absorption.

* This work was done with the support of Kuwait University, grant No. SP029,
and Kuwait Foundation for the Advancement of Sciences, grant No. 87-02-02.
Also, support came from the Director, Office of Energy Research, Division of
Nuclear Physics of the High Energy and Nuclear Physics of the U.S. Department
of Energy under Contract DE-AC03-76SF00098.
I. Introduction

Considerable attention has been paid in recent years to pion production in heavy ion collisions$^{1-7}$ and pion-nucleus reactions$^{8-14}$ hoping that one can learn about nuclear structure and reaction mechanisms. This is because some of the useful properties of the pion as probe are: its lack of spin, its isospin triplet state (which is a powerful probe to the isospin character of the nucleus compared to the nucleon, which is a doublet isospin state), its striking property of scattering through the Δ_{33} resonance ($T_{\pi}=100-300$ MeV) with large ratio of elementary cross section: $d\sigma(\pi^-p)/d\sigma(\pi^-n) = d\sigma(\pi^+n)/d\sigma(\pi^+p) = 9$, and the ease with which it can be detected and distinguished from other products of nuclear reactions.

In heavy ion reaction models of pion behavior, the pions have usually been treated classically, despite their deBroglie wave length being greater than nucleon dimensions. In this paper we begin to assess quantal effects for pions in nuclei.

Once the pion has collided with the nucleus, its scattering via the potential that represents the pion-nucleus interaction must be considered. So, further experimental and theoretical work gave more information about the pion-nucleus optical potential.$^{15-28}$ The optical potential developed by Stricker et al19 and Carr et al19 has the interesting feature that it can describe both the picnic atoms and low energy pion-nucleus scattering with a parameter set not strongly changing with energy. However, they extended their analyses to higher energy regions17 by properly taking into account the quasielastic scattering process. In their work the π-nucleus optical potential of Ericson and Ericson21 that fits picnic atom data is shown to reproduce low-energy scattering data by including the energy dependence of the coefficients, the nuclear density distribution $\rho(r)$, and the effect due to
angular transformation terms (ATT),22 which has a kinematic origin. The Lorentz-Lorenz Ericson-Ericson term (LLEE) seems to include most of the significant physics and to be the most convenient as a description of the low-energy phenomena. The LLEE term is complicated since it acts on the product of the density distribution \(\rho(r), \rho^2(r), \rho(\rho)\rho_p(r)\), where \(\rho\) and \(\rho_p\) are the nucleon and proton density distributions, respectively) and the pion wave function. In Ref. 13 an approximation was made by considering a sharp boundary representing the nuclear surface, setting \(\rho(r)\) to equal the nuclear density at the center of the nucleus, and letting the pion wave function be transparent with respect to the LLEE term, and hence this term acts only on the nuclear density. This approximation is justified, since the motivation is to cover a wide range of energies. Of course, if one is interested in propagation of pions through nuclei, low-energy pion-nucleus scattering, and pionic atoms, a special attention to the LLEE term must be paid because of its dynamical origin.

II. Propagation of Pions Through Nuclei

The problem of interaction of pions with nuclei (many-particle systems) at medium energies can be treated nonrelativistically based on Schrödinger mechanics. The treatment proved itself to be reliable lowest-order approximation to the physics of the problem. Moreover, it meshes naturally with the nonrelativistic description of the nuclear structure.

For a massive nucleus (of mass number \(A\) and charge \(Z\)) relative to a pion of mass \(m_n(\mu=\frac{m_n}{c^2}=140 \text{ MeV})\), the center of mass of the system, approximately, coincides with the center of mass of the nucleus (the ACM). Then the problem of propagating a pion with initial coordinate \(\mathbf{r}_0\), relative to the center of the nucleus, and momentum \(\mathbf{p}_0=\hbar\mathbf{k}_0\), through a nucleus which is at rest in the
lab frame, can be described in the ACM frame by the following Schroedinger equation:

$$\left[-\frac{\hbar^2}{2\mu^*} + \frac{2\mu^*}{(\hbar c)^2} \left(E_{\pi} + \tilde{V}_{opt}(r,k_0,\hat{r}.\hat{k}) \right) \right] \psi_{k_0} (r,k) = 0, \quad (1)$$

where μ^* is the pion reduced rest mass energy

$$\mu^* = \left(\frac{1}{\mu} + \frac{1}{(\hbar c)^2} \right) \text{ with } \hbar c^2 = 931 \text{ MeV},$$

and E_{π} is the initial pion total c.m. energy identified by the initial variables r_0 and p_0 and given by

$$E_{\pi} = \frac{(\hbar c)^2}{2\mu^*} k_0^2 + V_{opt}(r_0,k_0,r_0,k_0). \quad (2)$$

In Eq. (1), and hereafter, unit vectors are identified by a caret ($\hat{\cdot}$) above the vectors and operators by a tilde ($\tilde{\cdot}$) above the variables. Also, \tilde{V}_{opt} is given by

$$\tilde{V}_{opt}(r,k_0,\hat{r}.\hat{k}) = \tilde{U}_{opt}(r,k_0,\hat{r}.\hat{k}) + V_{c}(r), \quad (3)$$

where \tilde{U}_{opt} is the optical potential operator that describes the interaction of a fictitious particle of rest mass energy μ^*, momentum $p(=\hbar k)$, and coordinate r with respect to the center of the nucleus and V_{c} is the coulomb potential.

Acting with \tilde{V}_{opt} on $\psi_{k_0} (r,k)$ we have:

$$\tilde{V}_{opt} \psi = V_{opt} \psi, \quad (4)$$

and then one can write V_{opt} as:

$$V_{opt}(r,k_0,\hat{r}.\hat{k}) = \psi^{-1}_{k_0}(r,k) \tilde{V}_{opt}(r,k_0,\hat{r}.\hat{k}) \psi_{k_0} (r,k)$$

$$= \psi^{-1}_{k_0}(r,k) \tilde{U}_{opt}(r,k_0,\hat{r}.\hat{k}) \psi_{k_0} (r,k) + V_{c}(r) \quad (5)$$

where
With the help of Eq. (4) we can write Eq. (1) as:

\[(v^2 + K^2) \psi_{k_0}^o (r,k) = 0 , \]

where

\[K^2 = \frac{2\nu^o}{(Mc)^2} [E_\pi - V_{opt}(r,k_0,\hat{r} \cdot \hat{k})] . \]

The wave number \(K \) is a complex variable if \(V_{opt} \) is complex and it can be written as:

\[K = k + i\kappa . \]

In Eq. (8) \(k \) is the real part of the wave number and \(\kappa \) is the complex one.

A solution of the form

\[\psi_{k_0}^o (r,k) = e^{i\kappa r \cdot \hat{k}} , \text{ (for constant } K \text{ only)}, \]

will satisfy Eq. (6) if \(K \) is constant, with \(\hat{k} \) as a unit vector specifying the direction of propagation of the pion wave function \(k = \hat{k}k \) inside a slab of uniform nuclear material. In our case \(V_{opt} \), and hence \(K \), is not constant but varies smoothly with \(r \). In this case it is reasonable to use the first order WKB approximation for \(E_\pi > \text{Re}V_{opt} \), and write the solution of Eq. (6) as:

\[\psi_{k_0}^o (r,k) = \exp \{ i \xi_{k_0} (r,\hat{k} \cdot \hat{r})(\hat{k} \cdot \hat{r}) \} , \]

where
This result expresses the fact that inside the nucleus the original external \(k_0 \) wave vector has been replaced by a new wave directed along \(K \), and \(K \) replaces \(k_0 \). In discussing this modification it is essential to realize that the complex wave number \(K = k + ik \) does not merely represent a change in the numerical value of the wave propagation vector, but in fact embodies a new physical feature in the propagation among the scatterers, namely, absorption; and the presence of \(k \) represents a loss in the propagated pion beam due to encounters with the scatterers. One should notice that, in Eqs. (7-8), the dependence of \(K \) on variables like \(r \), etc. is omitted for simplicity since that dependence is clear. This omission will be used hereafter for functions like refractive index, wave function etc. when it is convenient.

III. Pion-nucleus Interaction and the Optics Approach

In optics there exists a completely analogous equation to Eq. (6), which is the equation describing the propagation of electromagnetic waves\[^{23}\] in a conducting medium with permittivity \(\varepsilon \), permeability \(\mu \), and conductivity \(\sigma \) (see pg. 612, Eq. (11, XII) of Born and Wolf, Ref. 23). In a problem of this type one has to consider the attenuation of electromagnetic waves through the conducting medium.
Indeed it emerges that much of the essential physics of our pion-nucleus interaction resembles optics, and one can learn a great deal about medium-energy interactions from the optics analogy. We could attempt to explain, briefly, the analogy between the quantum mechanical problem of pion-nucleus interaction in medium energies and the electromagnetic propagation in a conducting medium by defining the complex index of refraction24 of the nucleus with respect to the pion as:

\[n(r, k_0, \hat{r} \cdot \hat{k}) = n_R(r, k_0, \hat{r} \cdot \hat{k}) + i n_I(r, k_0, \hat{r} \cdot \hat{k}) \]

\[= \frac{K}{k_0} \]

\[= \left\{ \frac{-2\mu^*}{(\omega c)^2} \left[E_\pi - V_{\text{opt}}(r, k_0, \hat{r} \cdot \hat{k}) \right] \right\}^{1/2}/k_0 \]

Accordingly, one can define:

\[\xi/k_0 = L \]

\[= L_R + iL_I, \quad (10b) \]

where

\[L_R = \left\{ \begin{array}{ll}
\int_{r_0}^r n_R(r', k_0, \hat{k} \cdot \hat{r}')dr' & \text{incoming} \quad (r \leq r_0) \\
\int_{r_t}^r n_R(r', k_0, \hat{k} \cdot \hat{r}')dr' + \int_{r_t}^r n_I(r', k_0, \hat{k} \cdot \hat{r}')dr' & \text{outgoing} \quad (r \geq r_t)
\end{array} \right. \quad (10c) \]

and similar relations hold for L_I by replacing n_R by n_I in the last equation. Squaring Eq. (10a) we obtain, upon equating the real and imaginary parts, the following relations:

\[n_R^2 - n_I^2 = \frac{2\mu^*}{(\omega c k_0)^2} \text{Re}[E_\pi - V_{\text{opt}}], \quad (11) \]

\[2n_R n_I = \frac{2\mu^*}{(\omega c k_0)^2} \text{Im}[E_\pi - V_{\text{opt}}], \quad (12) \]
There is difficulty in obtaining an expression for n_R and n_I from Eqs. (11) and (12) if full inclusion of the LLEE term in V_{opt} is to be considered. This difficulty arises from the fact that V_{opt} depends on the wave solution itself. However, this difficulty can be circumvented by adopting the eikonal approximation, as will be shown later, and hence an expression for n_R and n_I can be obtained. This means that with this approximation, Eq. (10) enables us to write the pion wave function in the pion-nucleus interaction region in terms of the real and imaginary parts of the refractive index of the nucleus as:

$$\psi_{k_0}(r, k) = x_{k_0}(r, k)\psi_{k_0}(r, k)$$

where

$$x_{k_0}(r, k) = e^{-k_0L_I(r, k_0, \hat{r} \cdot \hat{k})(\hat{k} \cdot \hat{r})}$$

is the attenuation amplitude, which is in the form of exponential function, for the pion local plane wave:

$$\psi_{k_0}(r, k) = e^{ik_0L_R(r, k_0, \hat{r} \cdot \hat{k})(\hat{k} \cdot \hat{r})}$$

The probability, dP, of finding the pion per unit volume at point r, which is $|\psi|^2$, becomes

$$dP_{k_0}(r, r \cdot \hat{k}) = e^{-2k_0L_I(r, k_0, \hat{r} \cdot \hat{k})(\hat{k} \cdot \hat{r})}$$

$$= e^{-s/\tilde{l}}$$

where \tilde{l} resembles the mean free path, for a pion wave traveling through a medium of constant density, since in this case dP falls to 1/e of its value after the wave has gone a distance \tilde{l} (see Fig. 1). Thus the probability of finding the pion diminishes exponentially with s and it is characterized by the local pion mean free path which is defined as:
\(\bar{\lambda}(\text{local mean free path}) = \frac{1}{[2k_0^2 | \langle n_1^*(r, k_0, r \cdot \hat{k}) \rangle |]} . \)

(17)

The fraction of absorbed pions is \(1 - \chi^2 \).

In reality we do not have a local pion plane wave, as given by Eqs. (13-17), but a pion wave packet of width \(\Delta r \) in \(r \) around a particular pion coordinate (with \(\Delta r \ll \text{the dimension of the nucleus} \)) and a spread \(\Delta k \) in \(k \) around \(k_0 \) when \(r \rightarrow m \) (with \(\Delta k \ll k_0 \)). However, the measurable physical quantities do not depend on the shape of the wave packet, and we may carry out our investigation to the pion-nucleus interaction in the time-independent framework of Eq. (1).

Now, as the pion wave with wave vector \(k_0 \) approaches the nucleus from a large distance, the imaginary parts of the index of refraction \(n_1 \) are initially zero; and hence the mean free path \(\bar{\lambda} \) is infinite. This situation changes as the pion wave reaches the nucleus. The pion absorption process will start to take place, and hence \(n_1 \) acquires values greater than zero, resulting in a finite smaller value of \(\bar{\lambda} \) as compared to the case where \(r \rightarrow m \). On the other hand, because of the dependence of \(n_1 \) on the coordinate \(r \) of the pion with respect to the center of the nucleus and on the angle between the two vectors \(r \) and \(k \), \(\bar{\lambda} \) will also depend on direction and energy of the pion wave. The same concept applies to the pion probability density, since it depends on \(\bar{\lambda} \) or simply on \(n_1 \). In summary, calculations of the pion probability density are not straightforward, since the refractive index depends on the wave function. Thus, one needs to solve Eqs. (11-12) for \(n_R \) and \(n_I \) and use them for calculating \(L_1 \). This implies that one should get detailed information about the propagation of the pion wave packet through the nucleus. That is, one must calculate \(\hat{k} \cdot \hat{r} \) along the propagation of the pion wave packet. In radial propagation \(\hat{k} \cdot \hat{r} \) is known for both the incoming and outgoing waves.
IV. The Eikonal Approximation

The fact that V_{opt} in Eqs. (11-12) depends on the wave function itself, which has an attenuation amplitude χ, forced us to seek a reasonable approximation for the case where χ varies very slowly. The approximation is appropriate where the essential physics of the pion-nucleus interaction resembles optics. One sensible and physically acceptable approximation, especially after introducing the nuclear refractive index, is the eikonal approximation, which is used successfully in optics. As in optics, it is found that it is convenient to define a real scalar function of position known as "the optical path," where constant optical path may be called the geometrical wavefront (plane of constant phase). This idea is adopted here in Eq. (15) by defining:

$$\phi(r,k_0,k \cdot r) = L_R(r,k_0,k \cdot r)[k \cdot r] .$$

(18)

Based on Eq. (18), Eqs. (14-15) can be written as

$$\chi_k^o = \exp(-k_o L L^{-1}) ,$$

(19)

$$\psi_k^o = \exp(ik_o \phi) ,$$

(20)

and

$$\psi_k^o = \exp(-k_o L L^{-1} \phi) \exp(ik_o \phi) .$$

(21)

We now employ a phenomenological approximation method to find the relation that ϕ must satisfy. Substituting Eq. (21) into Eq. (6) to obtain, upon equating the real parts on both sides of the resulting equation and neglecting the term which contains $k_o^2 \chi^{-1} \chi^2$, an equation which ϕ must satisfy:

$$\nabla \phi \cdot \nabla \phi = n_R^2 - n_I^2 .$$

(22)
Eq. (22) is known as the eikonal equation. Also, we obtain, upon equating the imaginary parts of the same resulting equation and neglecting the term which contains $x^{-1}v_x$, the following relation:

$$v^2\phi = 2k_0 n_R n_I$$ \hspace{1cm} (23)

In obtaining Eq. (22), the slow variation of x allows us to neglect terms containing v^2_x since it is essentially zero even if k_0 is not large. Of course, this approximation is more justified for small pion wave length (large k_0). Also, in obtaining Eq. (23), the term containing $x^{-1}v_x$ is neglected since v_x is essentially zero on the tail of nuclear density and very small compared to the rest of Eq. (23) inside the nucleus, as we will see later. We will see how useful the two Eqs. (22-23) are in calculating n_R and n_I if the LLEE term of the optical potential is to be included.

The eikonal equation allows us to define a unit vector which is directed along the trajectory of the center of the pion wave packet. This trajectory can be defined as the orthogonal trajectories to the pion geometrical wave front $\phi = \text{constant}$. If r is the pion position vector from the center of the nucleus at point, P, on a trajectory and s the length of the trajectory measured from a fixed point, P_0, on it (fig. 1), then

$$k = \frac{dr}{ds} = -[n_R^2 - n_I^2]^{-\frac{1}{2}}v_\phi .$$ \hspace{1cm} (24)

Eq. (24) will allow n_R and n_I to depend on the angle between r and k vectors (as we will see later) if the LLEE term is involved. Also, from the definition of gradient we get:

$$\frac{d\phi}{ds} = [n_R^2 - n_I^2]^\frac{1}{2} .$$ \hspace{1cm} (25)

Eq. (25) can be used to find the phase ϕ along the trajectory of the center of the pion wave packet. Although ϕ depends on n_R and n_I along the path length,
s, for the case of zero impact parameter it can be calculated with the help of
the phase equation, Eq. (25), since $s=r$ in this case. The phase for this
special case will be given by

$$
\phi(r,k_0,\pi) = \left\{
\begin{array}{ll}
\int_{0}^{r} [n_R^2 - n_I^2]^{1/2} dr & \text{incoming (r} \leq r_0) \\
\int_{0}^{r} [n_R^2 - n_I^2]^{1/2} dr + \int_{0}^{r} [n_R^2 - n_I^2]^{1/2} dr & \text{outgoing (r} > 0)
\end{array}
\right.
(25a)

\text{where we set } \theta(r_0,k_0,-1) \text{ to be zero. Note that, when we start the pion at}
\text{large } r_0 \text{ where } U_{\text{opt}} = 0, n_R \text{ must be 1 if } V_c = 0 \text{ and } n_I \text{ should be zero.}

V. Nuclear Refractive Index

The aim of this section is to find an expression for n_R and n_I based on
the optical potential developed by, first, Stricker, Carr and McManus19 (SCM)
and, second, by Carr, McManus and Stricker18 (CMS). The CMS potential is of
interest to us, since π-atom data, pion-nucleus scattering data and pion-
nucleus absorption data are all described by one set of nearly energy
independent parameters. The treatment will be general for any nucleus of mass
number A, Z protons, and N neutrons, and also all terms, including the
nonlocal LLEE term, will be considered. It is convenient to write the CMS
optical potential as a sum of local and nonlocal terms:

$$
U_{\text{opt}} = \frac{2\pi(\hbar c)^2}{\omega} \{ \xi(r) + \xi_{\text{LLEE}}(r,k_0,\hat{r} \cdot \hat{k}) \},
(26)
$$

where

$$
\xi(r) = \xi_{\pi N}^{\text{SC}}(r) + \xi_{\pi N}^{\text{ab}}(r) + \xi_{\text{AT}}^{\pi}(r),
$$

$$
\xi_{\pi N}^{\text{SC}}(r) = f_1 b(r) \text{ (single pion-nucleon scattering term),}
$$

$$
\xi_{\pi N}^{\text{ab}}(r) = f_2 B(r) \text{ (pion absorption term),}
$$
\[F_{\text{AT}}(r) = \frac{1}{2}(1-f_1^{-1})v^2c(r) + \frac{1}{2}(1-f_2^{-1})v^2C(r) \] (angle transformation term),

\[F_{\text{LLEE}} = -v \cdot \left[(L(r)/(1+\frac{4\pi}{3})L(r)) \right]/v \] (Lorentz-Lorenz Ericson-Ericson nonlocal term),

\[b(r) = \overline{b}_o \rho(r) - \epsilon_\pi b_1 \delta \rho(r) , \]

\[B(r) = \overline{b}_o \rho^2(r) - \epsilon_\pi b_1 \rho(r) \delta \rho(r) , \]

\[c(r) = c_o \rho(r) - \epsilon_\pi c_1 \delta \rho(r) , \]

\[C(r) = c_o \rho^2(r) - \epsilon_\pi c_1 \rho(r) \delta \rho(r) , \]

\[\epsilon_\pi = 0, +1, -1 \text{ for } \pi^0, \pi^+ \text{ and } \pi^- , \text{ respectively}, \]

\[\delta \rho(r) = \rho_n(r) - \rho_p(r) = \rho(r) - 2\rho_p(r) , \]

Here \(\tilde{\omega} \) is the pion reduced energy,

\[\tilde{\omega} = 1/[1/\omega + 1/(AM_o c^2)] ; \]

\(f_1 \) and \(f_2 \) are kinematic factors,

\[f_1 = [1 + \epsilon]/[1 + \epsilon/A] , \]

\[f_2 = [1 + \frac{1}{2}\epsilon]/[1 + \frac{1}{2}\epsilon/A] , \]

\[\epsilon = \omega/(M_o c^2) , \]

\[\omega^2 = (\hbar c)^2 K_o^2 + \mu^2 ; \]

\(\overline{b}_o \) is the effective s-wave scattering length in the nucleus,

\[\overline{b}_o = b_o - 3K_F b_1^2/(2\pi) \text{ with } K_F \text{ the Fermi momentum, } K_F = 1.4 \text{ fm}^{-1} , \]

\[L(r) = f_1^{-1} c(r) + f_2^{-1} C(r) ; \]
the densities \(\rho(r) \), \(\rho_p(r) \) and \(\rho_n(r) \) are normalized to \(A \), \(Z \) and \(N \) respectively; the parameters \(b_0 \), \(b_1 \), \(c_0 \), \(c_1 \), \(B_0 \), \(B_1 \), \(C_0 \), \(C_1 \) and \(\lambda \) are taken from Carr's17,13 fit to the pion-nucleus scattering cross-sections.

It is interesting at this point to start the pion at some large distance \(r_0 \) where \(U_{\text{opt}} \approx 0 \) in order to find \(n_R \) and \(n_I \) for all values of \(0 \leq r \leq r_0 \) outside and inside the nucleus. By taking this condition into consideration, then substitution of Eq. (26) into Eqs. (11-13) will yield:

\[
2n_R^2 - n_I^2 = 1 - \frac{2\nu^*}{(Mck_0)^2} [V_C(r_0) - V_C(r)] + \frac{4\pi \nu}{\omega k_0^2} \text{Re} \{ \ell(r) + \ell_{\text{LLEE}}(r, k_0, \hat{r} \cdot \hat{k}) \} \tag{27}
\]

and

\[
2n_R n_I = \frac{4\pi \nu}{\omega k_0^2} \text{Im} \{ \ell(r) + \ell_{\text{LLEE}}(r, k_0, \hat{r} \cdot \hat{k}) \} \tag{28}
\]

In Appendix A the term \(\ell_{\text{LLEE}} = \psi^{-1} \ell_{\text{LLEE}} \psi \) will be expressed in terms of \(n_R \) and \(n_I \), and its results can be used in Eqs. (26-28) to find (after some algebraic manipulation):

\[
n_R = W^{\frac{1}{2}} \left[n + \left(n^2 + 1 \right)^{\frac{1}{2}} \right]^{\frac{1}{2}}, \quad \text{(then } k = k_0 n_R \text{),} \tag{29}\]

\[
n_I = W/n_R, \quad \text{(then } \kappa = k_0 n_I \text{)} \tag{30}\]

where

\[
n = Q/W, \tag{31}\]

\[
W = \frac{1}{2} \left[H + 8 \varepsilon_1 (2Q)^{\frac{1}{2}} + 2h_2 Q \right] / \left[1 - h_1 \right], \tag{32}\]

\[
Q = \frac{1}{2} \left[\left(-B \pm \left(B^2 - 4AC \right)^{\frac{1}{2}} \right) / (2A) \right]^2, \quad \text{(the positive sign is used for our radial propagation)} \tag{33}\]

\[
A = 1 + h_1^2 + h_2^2 - 2h_1, \tag{34}\]
\[B = -\beta \{ \frac{4\pi}{\omega} (h_1 - 1) - \frac{1}{\omega} h_2 \} \]

\[C = (h_1 - 1)D + h_2 H \]

\[h_1 = \frac{4\pi \mu}{\omega} \text{Re}\ f, \]

\[h_2 = \frac{4\pi \mu}{\omega} \text{Im}\ f, \]

\[\xi_1 = \frac{4\pi \mu}{\omega} \text{Re}\ \frac{df}{dr}, \]

\[\xi_2 = \frac{4\pi \mu}{\omega} \text{Im}\ \frac{df}{dr}, \]

\[D = 1 - \frac{2u}{(M\omega k_0^2)} [V_C(r) - V_C(r_0)] + \frac{4\pi \mu}{\omega k_0^2} \text{Re}\ f(r), \]

\[H = \frac{4\pi \mu}{\omega k_0^2} \text{Im}\ f(r), \]

\[\beta = r \cdot k/k_0, \]

\[f = L(r)/[1 + (4\pi/3)\beta L(r)]. \]

Of course, all the variables listed above have \(r \) dependence and some of them depends on \(k_0 \) and \(\mathbf{r} \cdot \mathbf{k} \), but this dependence is omitted for simplicity.

Also, \(f(r) = \psi^{-1} \xi(r) \psi \) and the Lorentz-Lorenz Ericson-Ericson function \(L(r) \) are defined by the CMS optical potential given by Eq. (26).

VI. Application to Nuclei Having Woods-Saxon Form

The nucleon and proton distributions, \(\rho(r) \) and \(\rho_p(r) \), for a particular nucleus may be represented quite accurately by a Woods-Saxon (or Fermi) distribution

\[\rho(r) = \rho_0/[1 + \exp\left(\frac{r - R}{a}\right)], \text{ with } a=0.54\ \text{fm for all nuclei,} \]
\[R_o = [1.12 \, A^{1/3} - 0.33 \, A^{-1/3}] \text{fm}, \]

\[\rho_p(r) = \frac{\rho_{op}}{[1 + \exp\left(\frac{r-R_{op}}{a_p}\right)]}, \text{ with } a_p = 0.454 \, \text{fm for all nuclei}, \]

\[R_{op} = [1.106 + 1.05 \times 10^{-4}A]A^{1/3} \text{fm}. \] (31)

The matter density \(\rho(r) \) is normalized such that \(\int \rho(r) \, dr = A \) and \(\int \rho_p(r) \, dr = Z \). For the Lanthanum nucleus \(^{139}\text{La}\) these normalizations give \(\rho_o = 0.162 \) nucleons/fm\(^3\), \(R_o = 5.74 \) fm, \(\rho_{op} = 0.066 \) protons/fm\(^3\) and \(R_{op} = 5.81 \) fm.

Figure 2 shows how the densities for all nucleons, for neutrons, and for protons vary with \(r \) in the case of \(^{139}\text{La}\).

In calculating \(n_R \) and \(n_I \) from Eqs. (29-30) one needs to evaluate \(V_c(r) \), \(\frac{d \rho}{dr} \), and \(f(r) \) at any value of \(r \) using Eq. (31) for \(\rho(r) \) and \(\rho_p(r) \) at any value of \(r \). First, for the total coulomb potential energy of a charged pion at any value \(0 \leq r \leq \infty \) one can use:

\[V_c(r) = \begin{cases}
Ze^2 \epsilon \pi r^{-1} & \text{if } r > R_{\text{zero}} \\
4\pi \epsilon^2 \epsilon \pi \left[r^{-1} \int_0^r \rho_p(r')r'^2 \, dr' + \int_r^{R_{\text{zero}}} \rho_p(r')r'dr' \right] & \text{if } r < R_{\text{zero}},
\end{cases} \] (32)

where \(R_{\text{zero}} \) is the radius at which \(\rho_p \) is essentially zero, i.e.,

\[\rho_p(r \geq R_{\text{zero}}) = 0. \]

Second, for \(\frac{d \rho}{dr} \) and \(f(r) \) one can relate them to \(\frac{d \rho}{dr} \) and \(\rho^2 \), and similar forms for \(\rho_p(r) \). Hence, for a Woods-Saxon distribution these derivatives are simply given by:

\[\frac{d \rho}{dr} = -a^{-1} \rho(1-\rho(\rho_o)), \]

and

\[\rho^2 = [2r^{-1} - a^{-1} (1 - 2\rho(\rho_o))] \frac{d \rho}{dr}. \] (33)
VII. Numerical Results and Discussion

We have carried out numerical calculations mainly for neutral pions on lanthanum-139 with some negative pion calculations also. Lanthanum has served as both beam and target in a number of Berkeley BEVALAC experiments, so it has special interest. In this paper we will not try to relate results to particular experimental data sets. Indeed, neutral pion data are rare in heavy ion work due to experimental difficulties, but it is natural to begin theoretical studies of quantal effects with neutral pions so as to avoid complications of the Coulomb interaction.

In Fig. 2 we show the Woods-Saxon density distributions used in the calculations. These curves give an orientation as to the radial distance scale for comparison with later figures.

We have solved for wave functions and potentials in the eikonal approximation described. The initial conditions are an inward moving wave at zero impact parameter (leftward-moving from the right margin on the displayed figures). The solutions are equivalent to a left-moving plane wave on a slab of nuclear matter with diffuse boundaries and of thickness equal to the lanthanum nuclear diameter.

Figure 3 stacks vertically the plots of various calculated quantities for 36 MeV neutral pions. Note that the nuclear center is in the middle, so the right-hand entrance surface as well as the left-hand exit surface are displayed. This figure shows the real and imaginary parts of the CMS optical potential, the corresponding refractive index and the damped oscillating wave function with its envelope. The fraction of the pion wave absorbed is shown in the lowest plot (Fig. 4e). Note that the wave amplitude envelope falls to about 10% of its incident value, corresponding to 99% absorption traversing
the La nucleus. It is of interest to check this result with our earlier calculations in constant density nuclear matter. (Mehrem et al.) Fig. 1 of Ref. 13 gives a mean free path in nuclear matter of about 2.5 fm at 36 MeV. Taking the diameter for mass 139 from Eq. (32) we get 11.47 fm between the half-density points. That is, the pion path traverses 4.59 mean free paths for an attenuation to 1.02%, in good agreement with the newer calculations displayed in Fig. 3. That the present more sophisticated treatment of the diffuse nuclear surface and the gradient terms in the LLEE potential gives the same answer for overall attenuation would not have been obvious. In particular we note that the imaginary part of the optical potential (Fig. 3a) and consequently the imaginary part of the refractive index (Fig. 3c) strongly peak in the nuclear surface region. The real parts show an oscillation at the surface resulting from the combination of density-dependent and density-squared-dependent terms and the radial gradients. The net real potential at 36 MeV is about 8 MeV attractive in the interior. Fig. 2 of Ref. 13 shows the real potential for neutral pions on Pb-207 nearly zero, going repulsive at lower energies and attractive at higher energies. The small difference between the older and newer calculations may arise from slightly different density distributions assumed for Pb-207 and La-139. Unlike ordinary optics the refractive index can be less than 1, since the wave number can be smaller than in vacuum for regions of net repulsive potential.

The behavior of the complex optical potential for increasing incident pion energies is shown in Fig. 4. The interior real potential becomes increasingly attractive as a consequence of the p-wave pion-nucleon attraction. The oscillations due to gradient terms in the surface become less pronounced, though there is a persistence of the surface-peaking in the imaginary component.
Our simple eikonal approximation (equivalently lowest-order WKB) runs into difficulty at lower energies, where the interior repulsive interaction gives rise to classically forbidden regions and turning points. Without a wave function the LLEE term in the optical potential cannot be evaluated. We show in Fig. 5 the optical potential and refractive index for 10 MeV, excluding the nuclear interior. Potential parameters for the pionic atom are used. It is evident that a surface absorption and a slight surface attraction persists in the outer surface before the interior repulsion begins to dominate.

Finally, in Fig. 6 we show the optical potential and refractive index plots for negative pions of 10 MeV incident energy. The extra Coulomb energy for pions in the interior avoids the difficulties mentioned in connection with neutral pions in Fig. 5. The overall potential shows a repulsion in the outer half of the nucleus, and the absorptive imaginary potential is, as always, surface-peaked.

We do not presume to improve upon the earlier optical potential calculations of pion nuclear scattering, except to afford some insight into the results by examination of the potentials and some wave propagation examples. There are some minor troublesome problems and cautions with respect to use of these complex optical potentials at kinetic energies so low that classically forbidden regions appear. In such regions the DEL-SQUARED operator in the LLEE term changes sign, and imaginary terms change from absorptive to source terms, and as discussed in Ref. 13 the negative mean free paths encountered by Hecking (Ref. 26) could come from this problem. It may be that this problem has no practical effect on the pionic atom and scattering calculations of Carr et al., since surface absorption is always so strong. However, positive pion scattering theory at low kinetic energies bears re-
examination. To apply quantal corrections to pion production on heavy nuclei, whether by nuclear or antiprotonic interactions, will force us to deal with all energies of pions, including the lowest energy pions. In this connection there may be situations of pion propagation through hot nuclear matter where imaginary potential source terms are appropriate to treat the stimulated emission or pion-laser action.

There have been earlier speculations that "bumps" in heavy-ion produced pion spectra might arise from quantal interference effects or partial pion orbiting in the nuclear surface. We hope to go on in a later paper to explore trajectories with non-zero angular momentum, but the prospects for "orbiting" on cold nuclear fragments seem minimal in view of the weak or repulsive potentials at low pion velocities and the strength of the absorption. An interesting extension of pion optical potential methods would be the treatment of pion propagation in hot nuclear matter at different densities and composition. That absorption will decrease and change sign as temperature increases seems obvious, but the temperature dependence of this and other optical potential parameters needs more fundamental theoretical work.

ACKNOWLEDGMENTS

One of us (H. Radi) gratefully acknowledges the hospitality and support of the University of California Lawrence Berkeley Laboratory during the course of this work. This work was done with the support of Kuwait University, grant No. SP029, and Kuwait Foundation for the Advancement of Sciences, grant No. 87-02-02. Also, support came from the Director, Office of Energy Research, Division of Nuclear Physics of the High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
Appendix A

Evaluation of the Lorentz-Lorenz Ericson-Ericson Term

The Lorentz-Lorenz Ericson-Ericson term defined by

\[f_{\text{LLEE}} = \mathcal{V}^{-1} f_{\text{LLEE}} \mathcal{V} \]

can take the form \(^{27}\)

\[f_{\text{LLEE}} = -\mathcal{V}^{-1} \mathcal{V} \cdot \left[f_\mathcal{V} \mathcal{V} \right] \] \hspace{1cm} (A1)

\[= -\mathcal{V}^{-1} \left[f_\mathcal{V}^2 \mathcal{V} + \mathcal{V} f \cdot \mathcal{V} \right], \]

where \(f \) is defined in the text. From the definition of \(\mathcal{V} \) which is given by Eq. (21) one can find that

\[\mathcal{V} = i k_0 \mathcal{V} \phi \quad \text{(for } L_L < L_R \text{ and } \forall n = 0), \] \hspace{1cm} (A2)

and hence

\[\mathcal{V}^2 = k_0 \mathcal{V} \left[i \mathcal{V}^2 \phi - k_0 \mathcal{V} \phi \cdot \mathcal{V} \phi \right]. \]

with the use of the eikonal approximation given by Eqs. (22-23), we can write,

\[\mathcal{V} \phi = -k_0^2 \left[2i n_L n_I + (n_R^2 - n_I^2) \right] \phi. \] \hspace{1cm} (A3)

The second term of Eq. (A1) can be simply given by:

\[\mathcal{V} f \cdot \mathcal{V} \phi = i k_0 \mathcal{V} f \cdot \mathcal{V} \phi. \]

Now, with the help of Eq. (24) we can write \(\mathcal{V} f \cdot \mathcal{V} \phi \) as

\[-i k_0 \mathcal{V} f \left[n_R^2 - n_I^2 \right] \mathcal{V} \phi. \] \hspace{1cm} (A4)

Finally, the LLEE term will take the following form:

\[f_{\text{LLEE}} = k_0^2 \left[(n_R^2 - n_I^2) + 2i n_L n_I \right] + i k_0 \mathcal{V} f \left[n_R^2 - n_I^2 \right] \mathcal{V} \phi. \] \hspace{1cm} (A5)
References

27. R.A. Mehrem (Indiana University), Private Communication (1988).
Figure Legends

Fig. 1. Schematic drawing of pion trajectory in nuclear field.

Fig. 2. Nucleon density distributions used in calculations.

Fig. 3. For incident neutral pions of 36 MeV kinetic energy and normal incidence on 139La (a) Real and imaginary components of the effective optical potential, (b) Real part of the refractive index, (c) Imaginary part of the refractive index, (d) real part of the left-going wave, with envelope, and (e) probability of the pion wave being absorbed. Note that the pion ray goes through the center of the nucleus and that the nuclear center is in the middle of the abscissa.

Fig. 4. The pion optical potential for normal incidence neutral pions of higher kinetic energies of (a) 50 MeV, (b) 67 MeV, and (c) 80 MeV.

Fig. 5. The pion optical potential and refractive index for normal incidence neutral pions of 10 MeV kinetic energy (Carr parameters for pionic atom used). The plot covers only the exterior of the nucleus, since a classically forbidden region due to S-wave repulsion is encountered at smaller radii.

Fig. 6. Same as Fig. 5, except for negative pion of 10 MeV kinetic energy. There is no classically forbidden region, so the entire radial distance range is displayed.
Fig. 2
radial propagation of φ in ^{139}La
$E_{\text{opt}} = 36 \text{ MeV}$

U_{opt} (MeV)

$\Re n (s/k_0)$

$\Im n (s/k_0)$

$\Re \varphi$

Absorbed fraction

$X \text{ (fm)}$

Fig. 3
radial propagation of π^0 in 139La

$E_{\pi^0} = 50$ MeV

$E_{\pi^0} = 67$ MeV

$E_{\pi^0} = 80$ MeV

Fig. 4
radial propagation of π^0 in ^{139}La

$E_{\pi^0} = 10 \text{ MeV}$

U_{opt} (MeV)

Re U_{opt}

Im U_{opt}

$\Re n = \kappa/k_0$

$\Im n = \kappa/k_0$

$r (\text{fm})$

Fig. 5
radial propagation of π^- in 139La

$E_{\pi^-} = 10$ MeV

Fig. 6