Lawrence Berkeley National Laboratory
Recent Work

Title
OXYGEN INTERSTITIAL TRANSPORT AND CHEMICAL COLORATION IN SODIUM-BETA ALUMINA

Permalink
https://escholarship.org/uc/item/9pj4065z

Authors
Jonghe, L.C. De
Buechele, A.
Armand, M.

Publication Date
1982-11-01
To be presented at the Fourth International Conference on Solid State Ionics, Grenoble, France, July 4-8, 1983

OXYGEN INTERSTITIAL TRANSPORT AND CHEMICAL COLORATION IN SODIUM-BETA ALUMINA

Lutgard C. De Jonghe, Andrew Buechele, and Michel Armand

November 1982

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
OXYGEN INTERSTITIAL TRANSPORT AND CHEMICAL COLORATION IN SODIUM-BETA ALUMINA

Lutgard C. De Jonghe*†, Andrew Buechele*, and Michel Armand*†

*Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
†Department of Materials Science and Mineral Engineering
University of California, Berkeley,
Berkeley, California, 94720

This research was supported by the Assistant Secretary for Conservation and Renewable Resources, Office of Advanced Conservation Technology, Electrochemical Systems Research Division of the U. S. Department of Energy under contract DE-AC03-76SF00098, and by the Electric Power Research Institute.
OXYGEN INTERSTITIAL TRANSPORT AND CHEMICAL COLORATION IN SODIUM-BETA ALUMINA

Lutgard C. De Jonghe*, Andrew Buechel*, and Michel Armand*†

*Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
†Department of Materials Science and Mineral Engineering
University of California, Berkeley,
Berkeley, California, 94720

Abstract

A reaction rate maximum occurs around 250°C in the bleaching of chemically discolored sodium beta aluminas. It is determined that the bleaching rate depends on the diffusion rate of oxygen interstitials in the conduction planes of sodium beta alumina. The reaction rate maximum indicates that an irreversible transition occurs from a high mobility to a low mobility oxygen interstitial around 300°C. It is proposed that this transition is one in which a free oxygen interstitial is transformed into a Roth-type interstitial.
I. Introduction

In a recent paper De Jonghe and Buechele [1] reported that sodium-beta aluminas are partly reduced by molten sodium. The reaction introduces oxygen vacancies, compensated by electrom, leading to a gradual discoloration of the electrolyte. At reaction temperatures above 400°C chemical coloration appears to involve an increasing sodium dissolution into the solid, as was reported by Weber and Hunt [2]. The chemical coloration can be completely bleached by heating in an oxidizing atmosphere. Below 400°C, bleaching of chemically colored Na-beta alumina single crystals proceeds in a well defined, layer-like fashion and follows very nearly parabolic bleached layer growth kinetics. The bleaching kinetics of these single crystals, chemically colored by sodium metal at 350°C, exhibit an unexpected maximum around 250°C. In this paper we report on this bleaching rate anomaly, and propose a mechanism that involves interstitial oxygen ion transport.
II Experimental

Sodium-beta alumina single crystals* with dimensions of about 2x2x5mm were immersed in molten sodium at 350°C for 165 or for 266 hours. This experiment was carried out in a glove box, under purified argon with less than 5 ppm oxygen. The molten sodium showed formation of an oxide layer, indicating that the oxygen fugacity in the metal melt should be at the Na₂O/Na equilibrium of about 10⁻⁵⁵ atm [3]. After this exposure to molten sodium the chemical coloration extended throughout the samples.

The chemically colored samples were bleached in air at 250, 300, 350, and 400°C. Due to the very limited availability of large single crystals only a limited set of experiment could be performed. After the bleaching treatment, the Na ions in the crystals were exchanged with molten AgNO₃, at 300°C, for about 20 minutes. The silver exchange strongly enhanced the remaining coloration [4] thus facilitating the optical measurement of the bleached layer thickness. Some samples were given a dual bleaching treatment: 24 hours at 350°C followed by 72 hours or 125 hours at 250 or 300°C.

*Union Carbide, Linde Division, San Diego, California, USA
III Results and Discussions

An example of a partly bleached single crystal is shown in Fig. 1. The crystal coloration has been enhanced by silver staining. The c axis is normal to the paper. The bleached layer is very discrete. Such discrete layers are typically formed as a result of the elimination of color centers when the recombination rate of the neutralizing defect with the color center is fast compared to its transport rate. The bleaching kinetics are parabolic as shown earlier [1].

The anomaly in the bleaching kinetics is evident from a comparison of the reaction rate constant k, calculated with Eq. 7, from isochronal bleached layer thicknesses as a function of temperatures, Fig. 2. The bleaching rate is maximum around 250°C and minimum around 350°C. The bleaching kinetics appear to be dependent on the chemical coloration treatment: crystals immersed in sodium for a longer time bleach slower. This is shown in Fig. 3, where bleaching rates after a 165hr coloration treatment (solid lines) are compared to those after a 265hr treatment. This result is expected if the equilibrium coloration defect concentration is not achieved rapidly, possibly due to a slow surface step.

As discussed earlier [1] the bleaching is a reoxidation process. Thus, during bleaching, oxygen ions diffuse into the crystal while electrons are transported out. Electroneutrality requirements will couple the fluxes. Additionally, highly mobile Na\(^+\) ions will screen completely the electrical fields that would otherwise arise. To find which species dominates the bleaching kinetics, the transport equations
need to be considered and reasonable estimates of the coloration defect density need to be made. The transport equations describing the coupled fluxes of electrons and oxygen ions are, in the absence of an electric potential gradient:

\[J_e = -\frac{1}{2} J_i = - \left(\frac{\sigma_e}{F^2} \right) \nu u_e \]

(1)

and

\[J_i = -(D_i C_i / RT) \nu u_i \]

(2)

where \(J_e \) = electron flux, \(J_i \) = oxygen ion flux, \(\sigma_e \) = electronic conductivity, \(F \) = Faraday constant, \(D_i \) = oxygen ion diffusion constant, \(R \) = gas constant, \(T \) = absolute temperature, \(\nu u_e \) and \(\nu u_i \) = chemical potentials of electrons and oxygen ions, \(C_i \) = mobile oxygen ion concentration.

Remembering that

\[\frac{1}{2} \nu_0^2 = \nu_i - 2 \nu u_e \]

(3)

Eg. (1), (2) and (3) lead to:

\[J_i = - \left(\frac{\sigma_e D_i C_i}{(D_i C_i F^2 + 2 RT \sigma_e)} \right) \nu \nu_0^2 \]

(4)

This flux will be controlled by the oxygen ion transport rather than by electrons, if:
Here, C_i is the concentration of all mobile oxygen which, in the bleaching below 400°C, is confined to the conduction planes [1]. This puts C_i at about 3.3×10^{-4} moles O_2/cm^3 for the present crystals that have an overall composition of $1.25 Na_2O \cdot 11 Al_2O_3$. The value of σ_e is about $10^{-15} (\Omega cm)^{-1}$ at 300°C (5,6). Thus, for Eq. (5) to be valid, one should satisfy

$$D_i C_i F^2 \ll \sigma_e RT$$ \hspace{1cm} (5)

An estimate of the upper bound on D_i can be obtained from the scaling constant, k. From the parabolic bleaching rates one may write:

$$dx/dt = k/x \hspace{1cm} (7)$$

where x is the bleached layer thickness. Also,

$$J_i = C_D dx/dt \hspace{1cm} (8)$$

where C_D is the total concentration of coloration defects. Since a weight change could not be detected after coloration or bleaching, the maximum value of C_D is about 10^{-3} weight fraction, or about 1×10^{-5} moles O_2/cm^3. Thus, with $k = 2 \times 10^{-10} cm^2/sec$ at 250°C:

$$J_i x \leq 2 \times 10^{-15} \text{ moles/cm sec.} \hspace{1cm} (9)$$
Integration of Eq. (4) over the bleached layer thickness, \(\ell \), assuming that Eq. (5) is valid, and further assuming that \(\sigma_e, D_i \) and \(C_i \) are about constant within the bleached layer leads to:

\[
D_i = - \frac{J_i 2RT}{C_i} (\Delta \mu_{O_2})^{-1} \tag{10}
\]

where \(\Delta \mu_{O_2} \) is the oxygen chemical potential difference between the surface and the coloration interface at \(x = \ell \). This \(\Delta \mu_{O_2} \) should correspond to the oxygen fugacity difference between air and the Na/Na\(_2\)O melt. Thus

\[
\delta \mu = RT \ln \frac{P_{O_2}^x}{P_{O_2}^0} = RT \ln 10^{-55} \tag{11}
\]

Putting the values of the respective parameters into Eq. (10), it is found that

\[
D_i \leq 5 \times 10^{-14} \text{ cm}^2\text{sec}^{-1}. \tag{12}
\]

Thus, the upper estimate to \(D_i \) is 3 to 4 orders of magnitude lower than required by Eq. (6) for oxygen ion diffusion controlled bleaching kinetics. The anomalous bleaching kinetics must therefore be understood in terms of changes in the transport mechanism of the oxygen ions in the conduction planes.

The results of the dual bleaching treatments are also shown in Figs. 2 and 3. After bleaching for 24 hrs at 350°C in air followed by
bleaching for 72 hr at 250°C, the total bleached layer thickness is 50 µm. The total equivalent time at 250°C, \(t_{250} \), is obtained from:

\[
t_{250} = 72 \text{ hr} + t_{250} \frac{k_{350}}{k_{250}}
\]

(13)

where \(t_{350} = 24 \text{ hr} \), and \(k_{350} \) and \(k_{250} \) are the scaling constants at 350 and 250°C in Eq. (7). It is seen that the bleached layer thickness is significantly less than expected from a reversibility postulate. Similar results of dual bleaching experiments are included in Figs. 3 and 4. It must thus be concluded that the changes in the bleached layers above 300°C are irreversible.

The above results can all be interpreted simply if it is assumed that the transported species is an oxygen interstitial. In the coloration process a number of these interstitials get removed, permitting the recombination of the \(V_{Al}^{\prime\prime} - Al_{i}^{\prime\prime} \) defect pairs associated with the Roth oxygen interstitial configuration [7]. When oxygen interstitials are re-introduced in the bleaching process, they should have a high mobility if they are not bound by the \(Al_{i}^{\prime\prime} - V_{Al}^{\prime}\) Frenkel pair. The bleaching rate anomaly data would then indicate that in sodium-beta alumina the conversion of free oxygen interstitials to bound oxygen interstitial occurs between 300 and 350°C.

It is interesting to note that in Na-8" aluminum conduction plane oxygen interstitials are not present, and one should therefore expect slower bleaching kinetics. This is indeed observed [8].
IV Conclusions

a. A bleaching rate maximum occurs at around 250°C during the reoxidation of chemically colored sodium-beta alumina.

b. The bleaching rates decrease for increased coloration times.

c. The bleaching rate anomaly can be understood if oxygen interstitials are the rate controlling species. The re-introduced oxygen interstitials would irreversibly covert to trapped interstitials between 300 and 350°C.
Acknowledgement

This research was supported by the Assistant Secretary for Conservation and Renewable Resources, Office of Advanced Conservation Technology, Electrochemical Systems Research Division of the U. S. Department of Energy under contract DE-AC03-76SF0098, and by the Electric Power Research Institute.

Discussions in the W. L. Roth are gratefully acknowledged.
References

Figure Captions

Fig. 1. Example of a partly bleached sample after silver staining. The crystal was immersed for 165 hr in sodium at 350°C, and then bleached in air for 98.5 hr. The bleached layer is discrete. The micrograph was taken looking down on the conduction plane.

Fig. 2. The scaling constant, k, calculated with Eq. (7) from bleached layer thickness measurements after a 24 hr annealing in air. A bleaching rate anomaly is observed between 250 and 350°C.

Fig. 3. Bleaching data for samples immersed for 226 hrs in liquid Na at 350°C. The solid data points are the results of dual bleaching treatments.

Fig. 4. Bleaching data for samples immersed for 162 hr in liquid sodium at 350°C. The solid data point is the result of a dual bleaching treatment. The dashed lines are the bleaching data of the samples, shown in Fig. 3, that were immersed longer in liquid sodium. Longer immersion time lead to slower kinetics.
Fig. 1

1.0 mm
Coloration: 266 hrs in Na at 350°C

Bleaching:

- ▲ 250°C
- □ 300°C
- ○ 350°C
- ● 24 hrs at 350°C + 72 hrs at 250°C
- ■ 24 hrs at 350°C + 72 hrs at 300°C

Fig. 3
Coloration: 162 hrs in Na 350°C
Bleaching:
- ▲ 250°C
- □ 350°C
- ● 24 hrs at 350°C + 125 hrs at 250°C

Fig. 4
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.