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Mitigation of the hose instability in plasma-wakefield accelerators
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2GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico,

Universidade de Lisboa, 1049-001 Lisboa, Portugal
3DCTI/ISCTE Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal

(Dated: May 9, 2017)

Current models predict the hose instability to crucially limit the applicability of plasma-wakefield
accelerators. By developing an analytical model which incorporates the evolution of the hose insta-
bility over long propagation distances, this work demonstrates that the inherent drive-beam energy
loss, along with an initial beam energy spread detune the betatron oscillations of beam electrons,
and thereby mitigate the instability. It is also shown that tapered plasma profiles can strongly
reduce initial hosing seeds. Hence, we demonstrate that the propagation of a drive beam can be
stabilized over long propagation distances, paving the way for the acceleration of high-quality elec-
tron beams in plasma-wakefield accelerators. We find excellent agreement between our models and
particle-in-cell simulations.

PACS numbers: 52.40.Mj, 41.75.Ht, 29.27.Bd, 52.35.-g, 52.65.Rr

Introduction - Plasma-based accelerators can provide
accelerating fields in excess of 10 GV/m [1, 2] and hence
are considered a technology candidate capable of leverag-
ing a dramatic miniaturization of future accelerators and
preventing the current scientific progress from faltering in
terms of provided beam energy, versatility and availabil-
ity of accelerator facilities. Plasma-wakefield accelerators
(PWFA) [3, 4] employ charged particle beams as drivers
of large amplitude plasma waves. Significant experimen-
tal results [2, 5] were obtained in the blowout regime, in
which a particle beam with a charge density greater than
the ambient plasma density expels all plasma electrons
within its vicinity, thereby generating a co-propagating
ion-channel with linear electron focusing and extreme ac-
celerating fields [6].

Identified by D. Whittum et al. in the early 1990’s [7],
the hose instability remains a long standing challenge for
PWFA. Hosing is seeded by initial transverse asymme-
tries of the beam or plasma spatial or momentum distri-
butions. According to current models, the beam centroid
displacement is amplified exponentially during the beam
propagation in the plasma [7–11], resulting in an unsta-
ble acceleration process or in beam-breakup. The most
recent description for the coupled evolution of the ion-
channel centroid Xc(ξ, t) and the beam centroid Xb(ξ, t)
in the blowout regime is given by [11]

∂2Xc

∂ξ2
+
k2
pcψ(ξ)cr(ξ)

2
(Xc −Xb) = 0 , (1)

∂2Xb

∂t2
+ ω2

β (Xb −Xc) = 0 , (2)

with the time t, the co-moving coordinate ξ = ct − z,
and where z is the longitudinal coordinate and c is the
speed of light. The plasma wavenumber is denoted by
kp = ωp/c, and the betatron frequency by ωβ = ωp/

√
2γ,

with the Lorentz factor γ, and where ωp =
√

4πn0e2/m

is the plasma frequency with the ambient plasma density
n0, the elementary charge e and the electron rest mass
m. The coefficients cψ(ξ) and cr(ξ) account for the rel-
ativistic motion of electrons in the blowout sheath and
for a ξ-dependence of the blowout radius and the beam
current [11]. According to Eq. (1), a beam centroid dis-
placement Xb leads to a displacement of the ion-channel
centroid Xc along the beam. The displacement Xc then
couples back to the temporal evolution of Xb according
to Eq. (2). The case where cψ = cr = 1 recovers the
seminal hosing model [7]. This limit, which accounts for
a linear response of sheath electrons, is characterised by
an exponential growth of Xb and Xc with increasing ξ
and t [8, 9]. Owed to the nonlinear response of the elec-
tron sheath, the growth rates decrease in the blowout
regime, because cψcr < 1 [11]. Despite this reduction
of the growth rate, however, the current theoretical de-
scriptions still predict that hosing eventually results in
beam breakup during the propagation, and hence poses
a strong constraint for the applicability of PWFAs.

Although in agreement with particle-in-cell (PIC) sim-
ulations for short propagation distances [11], current
models overestimate the hosing growth rates as soon as
the drive-beam energy change becomes significant. This
is shown in Fig. 1, which depicts the result of a three-
dimensional PIC simulation with OSIRIS [12], indicat-
ing that hosing can be far less pronounced than what has
been reported so far. Yet unnoticed, this intriguing result
suggests that the blowout regime can provide a satura-
tion mechanism for the hose instability, which strongly
damps the beam centroid oscillations during the propa-
gation, thereby contributing to the stabilization of the
beam propagation over long distances.

In this Letter we show by means of analytical theory
and with PIC simulations that hosing can be mitigated in
the blowout regime. This has not previously been iden-
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FIG. 1. Result from a 3D PIC simulation showing plasma
and beam charge densities at time ωβ,0t = 71.6. The beam
has an initial spatial centroid offset, introduced at position
ξ = 0, and is subject to hosing. Beam charge density nb is
projected onto the shown x-ξ plane. Lines indicate Xb(ξ),
as a result from the models in Ref. [7, 8] (orange solid) and
Ref. [11] (green solid), respectively. Depicted is also the result
from Eq. (1) and Eq. (7), derived within this work (red solid),
and Xb(ξ) retrieved from the PIC simulation (black dashed).
Inset: Enlarged depiction of the beam centroids.

tified because current analytic models neglect the energy
change of the drive-beam particles. Instead, here we find
that the energy change, which naturally occurs as the
beam excites the plasma wave, and/or an initial beam
energy chirp, can detune the betatron oscillations of indi-
vidual slices along the beam, thereby mitigating their res-
onant coupling via the plasma. We also show that beam-
centroid oscillations can significantly be reduced if the
drive-beam features a sub-percent uncorrelated energy
spread, which introduces a decoherence of the betatron
oscillations of individual beam electrons. Our theoretical
model can accurately explain the reduced centroid am-
plitude of oscillations observed in simulations, as shown
in Fig. 1 (see dashed line and solid red line) and in Fig. 2.
We also propose to substantially decrease the initial hos-
ing seed by using tailored vacuum-to-plasma transitions.
This letter outlines these physical phenomena limiting
the detrimental effects of hosing. We confirm all our
analytical predictions with three-dimensional PIC simu-
lations using OSIRIS. The parameters used in these sim-
ulations differ from those proposed for a number of high-
energy beam facilities. Numerical demonstrations of the
hosing saturation for parameters corresponding to these
facilities are to be published elsewhere [13]. Our find-
ings pave the way for stable acceleration of high-quality
beams over long distances in PWFAs, and provide the-
oretical evidence for why hosing to date has not been
experimentally detected.

Derivation of the beam-centroid equation - The start-
ing point is the differential equation for the transverse
position x of a single beam electron relative to the axis

in a homogeneous ion-channel [14, 15]

d2x

dt2
+
γ̇

γ

dx

dt
+ ω2

β (x−Xc) = 0 , (3)

where γ̇ = dγ/dt. The Lorentz factor γ ' pz/mc � 1,
with the longitudinal momentum pz, is decoupled from
the transverse motion, since dx/dt� c. Radiation effects
are neglected. The term γ̇/γ results in a damping or am-
plification of the amplitude of the single-electron oscilla-
tion, depending on whether the electron gains (γ̇ > 0) or
loses (γ̇ < 0) energy, respectively. The restoring force is
directed towards the channel centroid Xc. The solution
for Eq. (3) is

x(t) ' x0A(t) cos [ϕ(t)] +
px,0

mγ0ωβ,0
A(t) sin [ϕ(t)] (4)

+ ωβ,0

∫ t

0

A(t)A(t′) sin [ϕ(t)− ϕ(t′)] Xc(t
′) dt′ ,

where ωβ,0 = ωp/
√

2γ0, A(t) = [γ0/γ(t)]1/4, and where
γ0 and px,0 are the initial Lorentz factor and trans-
verse momentum, respectively. The phase-advance is de-
fined by ϕ(t) =

∫
ωβdt. The relative energy and am-

plitude variations occur on timescales longer than the
betatron period in relevant scenarios. Thus, the terms
|γ̇Ȧ/(ϕ̇2γA)| � 1, |Ä/(ϕ̇2A)| � 1 and |γ̇/4γ0ωβ,0| � 1
were neglected.

In the following, the energy of an electron is given by
γ(t) = γ0 + Et + δγ, where γ0 = γ0(ξ) is the initial
mean slice energy as a function of the co-moving coordi-
nate, accounting for an initial energy chirp. The differ-
ential change of energy along the beam is accounted for
by means of the term Et, where E = −eEz/mc, where
Ez = Ez(ξ) is the longitudinal electric field, and where
electrons are fixed to their initial position in the co-
moving frame. The uncorrelated energy spread is incor-
porated through a finite deviation of the electron energy
from the mean slice energy δγ = γ − γ. All overlined
quantities refer to slice-averaged quantities.

Electrons with a small relative energy deviation
|δγ/γ| � 1 have a betatron frequency ωβ which deviates
from ωβ according to ωβ ' ωβ(1− δγ/2γ). Hence:

ϕ(t) = ϕ(t)

(
1− δγ

2γ0

ωβ
ωβ,0

)
, (5)

where ϕ = 2(ωβ,0/ωβ − 1)/ε, ωβ,0 = ωp/
√

2γ0 and
ωβ = ωβ,0/

√
1 + εωβ,0t. Note that ωβ is time-dependent

owing to a finite relative energy change per betatron cy-
cle ε = E/γ0 ωβ,0 = −

√
2/γ0 Ez/E0, with E0 = ωpmc/e.

Eq. (5) infers that electrons with differing energy within a
slice acquire a differing phase advance, which leads to the
phase-mixing of the electron betatron oscillations. This
phase mixing can damp the hose instability, similarly to
the damping of the hosing of fully self-modulated beams
through a change of the betatron frequency [16].
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In order to assess the effect of the phase-mixing onto
the hose instability, the beam centroid Xb at a given
co-moving position ξ is deduced from Eq. (4) by av-
eraging with respect to an initial phase-space distribu-
tion f0(x0, px,0, γ0) within each beam slice, Xb(ξ, t) =∫
x f0 dx0 dpx,0 dγ0, with

∫
f0 dx0 dpx,0 dγ0 = 1. We as-

sume that the initial transverse offset and momentum in
a slice are not correlated with energy. Hence, f0 is sep-
arable f0 = f⊥(x0, px,0) fγ(γ0). While the distribution
f⊥(x0, px,0) is arbitrary (apart from assuming f⊥ = 0
outside the channel) with a mean spatial value x0 = Xb,0,
the energy distribution considered here complies with a
Gaussian distribution fγ = (

√
2πσγ)−1 exp

(
−δγ2/2σ2

γ

)
.

Averaging over the initial transverse phase space distri-
bution and over the Gaussian energy distribution, ne-
glecting the variation of A owed to δγ, yields

Xb(ξ, t) ' (6)

Xb,0(ξ)A(ξ, t) exp

(
−∆γ2α(ξ, t)2

2

)
cos [ϕ(ξ, t)]

+

∫ t

0

A(ξ, t)A(ξ, t′) exp

[
−∆γ2(α(ξ, t)2 − α(ξ, t′)2)

2

]
× sin [ϕ(ξ, t)− ϕ(ξ, t′)]Xc(ξ, t

′)ωβ,0(ξ) dt′ ,

with the initial relative energy spread ∆γ = σγ/γ0, the
amplitude A = (γ0/γ)1/4 and α = ϕωβ/2ωβ,0. The ini-
tial mean slice transverse momentum is assumed zero for
compactness. Equations (1) and (6) describe the coupled
evolution of Xc and Xb in the blowout regime. They re-
cover known results in the blowout regime at sufficiently
early times [11]. When energy effects become relevant,
however, they show that hosing can be mitigated.

Interpretation using a two-particle beam - In order to
investigate the physical predictions of Eqs. (1) and (6)
analytically, we use a two-particle (two-slice) model such
that Xb(ξ, t) = Xb,1(ξ, t)δ(ξ − ξ1) + Xb,2(ξ, t)δ(ξ − ξ2).
The first slice, at ξ1, is unaffected by the hose instability,
but drives the channel centroid oscillations according to
Eq. (1). The motion of the slice at ξ2 is driven by those
channel oscillations according to Eq. (6) [13].

We start by determining the timescale for the hos-
ing mitigation by isolating the contributions of finite
∂ξε 6= 0, which accounts for the differential energy change
along the beam. Analytical results are valid for arbitrary
cr(ξ), cψ(ξ), for beams without initial energy spread, and
for constant A. Initially, the trailing slice is resonantly
driven by the transverse motion of the first slice, enhanc-
ing the amplitude of Xb(ξ2). This corresponds to the
initial hosing growth investigated in Ref. [11]. However,
at time ωβ,0td,ε '

√
3π/∆ε, where ∆ε = |ε(ξ1) − ε(ξ2)|,

when the phase difference of the two slices is significant,
Xb(ξ2) reaches a maximum [13]. For t > td,ε, the oscil-
lation amplitude of Xb(ξ2) saturates at a smaller value.
This fundamentally novel result is in strong contrast with
current models, which predict exponentially growing am-
plitudes until beam breakup.

This finding is significant because the pump depletion
time is typically much longer than td,ε. We demonstrate
this by comparing the pump depletion time, given by
tdp = 1/ωβ,0 ε̂, to td,ε, where ε̂ = max(−ε). Hence, de-
coupling of two slices occurs well before pump depletion
if ∆ε/ε̂ > 3πε̂. Because |ε̂| � 1 and since ∆ε/ε̂ ranges
from zero to unity along any drive beam, the two parti-
cle model suggests that slices within the beam in PWFAs
are decoupled significantly before depletion.

The parameter ε is related to key experimental PWFA
parameters as follows. The longitudinal field within the
beam region can be approximated by Ez/E0 '

√
Ib/IA

[17, 18], where Ib is the beam current and IA ' 17 kA
is the Alfvén current. Hence, ε ' −

√
2Ib/(IAγ0), and

FACET experimental parameters [19, 20], for instance,
yield ε̂ ≈ 0.007. This result indicates that the growth of
the hose instability stops well before energy depletion in
typical PWFA scenarios and possibly justifies why hosing
was not detected in previous experiments [2, 5].

The two-particle model also indicates that an initial
linear energy chirp, χ = γ−1

b k−1
p dγ/dξ, can mitigate hos-

ing. The centroid oscillations of two spatially resonant
beam slices (∆ξ = k−1

p π
√

2) decouple after ωβ,btd,χ '√
2/|χ|, assuming crcψ = 1 and ε = 0 [13]. The damping

due to this effect is similar to BNS damping [21]. Here,
γb and ωβ,b refer to the initial beam-averaged Lorentz
factor and betatron frequency, respectively.

Additionally, according to Eq. (6), the amplitude of the
Xb oscillations are damped exponentially owed to a finite
uncorrelated energy spread. To isolate this effect, we con-
sider a beam with no initial chirp in the limit of no slice
energy change (ε → 0). In this conservative scenario,
the amplitude of the centroid oscillations reduces by
exp(−1/2) after the decoherence time ωβ,0td,∆γ ' 2/∆γ
[13]. Therefore, td,∆γ . tdp if ∆γ & 2ε̂. For the typical
parameters of FACET, where ε̂ ≈ 0.007, a sub-percent-
level energy spread already significantly contributes to
the mitigation of hosing. It should be noted that if
td,ε . td,∆γ , the exponential damping of Xb due to the
uncorrelated energy spread becomes substantial since Xb

stops growing owing to finite ∂ξε 6= 0.
Numerical results & comparison to PIC simulations -

Because fully analytical solutions of our model are com-
plex, we complement the analysis of the two-particle
model with PIC simulations using OSIRIS [12] and with
the numerical solution of Eq. (1) and the differential form
of Eq. (6), given by:

∂2Xb

∂t2
+
ωβ

2

ωβ,0

(
ε+ κ1∆γ2

) ∂Xb

∂t

+ ωβ
2(1 + κ2∆γ2)(Xb −Xc) = 0 ,

(7)

with κ1 = (ωβ/ωβ,0 − (ωβ/ωβ,0)2)/ε, and κ2 =
(ωβ/ωβ,0)4/2 − (ωβ/ωβ,0)3/4. This equation, which ne-
glects terms O(∆γ4) and O(ε2), applies for any beam
and blowout-regime wakefield.
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C1: ǫ = 0, ∆γ = 0.0
C2: ǫ = 0, ∆γ = 0.05
C3: ǫ 6= 0, ∆γ = 0.0
C4: ǫ 6= 0, ∆γ = 0.05
PIC: C3

PIC: C4

FIG. 2. Absolute value of the beam centroid at kpξ = 3.0. De-
picted are numerical solutions of Eq. (7) for no energy change
ε = 0 and no energy spread ∆γ = 0.0 (green solid), for ε = 0
and ∆γ = 0.05 (yellow solid), for ε 6= 0 and ∆γ = 0.0 (blue
solid) and for ε 6= 0 and ∆γ = 0.05 (red solid). These curves
are compared to the results of PIC simulations (dashed).

We consider a Gaussian electron beam with γ0 =
1956.95, a peak current of Îb = IA/4, transverse dimen-
sions of kpσx = kpσy = 0.1, and longitudinal dimension
of kpσz = 1.0, traversing a plasma target with a flat-
top density n0 and driving a plasma wave in the blowout
regime (cf. Fig. 1). The initial centroid along the beam
is given by kpXb,0(ξ) = 0.01×Θ(kpξ), where Θ(x) is the
Heaviside-step function. The initial centroid offset is in-
troduced from the peak current location at ξ = 0. The
beam has no initial energy chirp. Following Ref. [11],
cr(ξ) = 4Ib(ξ)/IA(kpR(ξ))2 and cψ(ξ) = 1/(1 + ψ(ξ)) in
Eq. (1), as well as Ez(ξ) for Eq. (7), are computed nu-
merically according to the model for the blowout regime
in Refs. [22, 23]. Here, R is the blowout radius and
ψ = (φ − Az)e/mc2 the normalized wakefield potential
in the sheath, with the electrostatic potential φ and lon-
gitudinal vector potential Az.

Numerical solutions of Eqs. (1) and (7) are depicted
in Fig. 2 for the cases C1: ε = 0, ∆γ = 0.0; C2: ε = 0,
∆γ = 0.05; C3: ε 6= 0, ∆γ = 0.0; and C4: ε 6= 0,
∆γ = 0.05, together with results from PIC simulations
for the two latter cases (C4 also corresponds to the result
shown in Fig. 1). Case C1, which resembles the model in
Ref. [11], features the expected exponential growth rate,
as illustrated in Fig. 2. For C3, the detuning of the slices
betatron oscillations leads to a saturation of the hose in-
stability. According to the two-particle model, the max-
imum amplitude for C3 is expected near ωβ,0td,ε ≈ 22.7
(∆ε between kpξ = 0 and the depicted slice at kpξ = 3.0),
which is in good agreement with the numerical result
and the result obtained from the PIC simulation. More-
over, in C2 and C4, the centroid oscillations are damped
because of the energy-spread induced betatron decoher-
ence within the slices. In C2 and C4, the energy spread
is ∆γ = 0.05, thus yielding ωβ,0td,∆γ = 40. The cor-
responding exponential damping of Xb for t & td,∆γ is
in good agreement with the observations in Fig. 2 for
both, the numerical solution of Eqs. (1) and (7) and the
particle-in-cell simulation.

Effective damping of the hose instability can occur as
long as the hosing seed is sufficiently small not to lead
to beam breakup before the mitigation takes place. Re-
ducing the initial hose seed is therefore still crucial to
fully stabilize the driver propagation. For this purpose
we propose a novel concept which employs plasma den-
sity tapers to mitigate initial beam centroid offsets that
seed hosing.

Mitigation of hosing with plasma-density tapers - We
consider a taper of the plasma density from the vacuum-
to-plasma interface at position zv to the flat-top plasma
profile from position z0. The beam centroid during the
propagation in the tailored vacuum-to-plasma transition
is described by

d2Xb

dz2
+ kβ(z)2Xb = 0 , (8)

with kβ = kβ,0
√
n/n0, when neglecting the channel cen-

troid displacement, the beam-energy change and effects
from energy spread. This equation corresponds to the
non-conservative system of an harmonic oscillator with
time-dependent frequency. The beam centroid is there-
fore damped during the propagation through the taper.

To confirm the hosing seed mitigation scheme, we re-
ran PIC simulations of C3 with a tapered plasma density
profile. The considered propagation-distance dependent
betatron wavenumber, kβ = ωβ/c, is given by kβ(z) =
kβ,0(1−(z−z0)/λopt)

−2 for zv < z ≤ z0, kβ(z) = kβ,0 for
z > z0 and kβ(z) = 0 otherwise (this functional depen-
dence was used for the beam betatron function matching
in Refs. [24, 25]). Here λopt ' L/

√
kβ,0L is an optimized

characteristic scale length of the taper. Such density pro-
files can be experimentally realized in appropriate gas
capillaries [26].

0

0.5

1

n
/n

0

-20 -10 0 10 20 30 40 50 60

z (k−1
β,0)

0

2

4

6

8

∣ ∣ ∣
X

b
/
X̂

b,
0

∣ ∣ ∣

kβ,0L = 0
kβ,0L = 5
kβ,0L = 10
kβ,0L = 20

FIG. 3. Hose mitigation by means of plasma density tapers
at the tail of a beam kpξ = 4.0. Shown are density profiles for
different taper lengths (top) and respective beam centroid am-
plitudes from PIC simulations (bottom) for kβ,0L = 0 (blue),
kβ,0L = 5 (green), kβ,0L = 10 (orange) and kβ,0L = 20 (red).

The evolution of Xb for various taper lengths are de-
picted in Fig. 3, illustrating the substantial reduction of
the hose instability when kβ,0L & 1, compared to the
case with no taper.
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Summary and conclusion - This work demonstrates
that the self-consistent beam energy evolution in the
blowout regime can mitigate the hose instability in PW-
FAs. We show that the drive-beam energy chirp, either
introduced initially or developed during propagation, re-
sults in the mitigation of the hose instability before pump
depletion, regardless of the initial beam energy [13]. We
also find that an initially sub-percent uncorrelated en-
ergy spread will further reduce the centroid oscillations.
Furthermore, it is shown that tapering the plasma profile
can efficiently reduce the initial hose seed.
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