Title
How environmental stress affects starch composition and functionality in cereal endosperm

Permalink
https://escholarship.org/uc/item/9q16h3rv

Journal
Starch/Staerke, 66(1-2)

ISSN
0038-9056

Authors
Beckles, DM
Thitisaksakul, M

Publication Date
2014

DOI
10.1002/star.201300212

Peer reviewed
How environmental stress affects starch composition and functionality in cereal endosperm

Diane M. Beckles and Maysaya Thitisaksakul

Department of Plant Sciences, University of California, Davis, CA, USA

Stressful environments can alter starch biosynthesis in cereal endosperm. The aim of this review is to carefully examine how starch functional properties are altered when plants encounter environmental parameters outside of the normal range. This is important because while growers and processors require grain yield stability and product uniformity this will be challenging in an era of variable weather patterns. Being able to predict the general physico-chemical nature of the starch as a result of growth status is a step towards the “precise” agriculture required for the 21st century. Variations in soil moisture and nutrient availability, ambient temperature, and atmospheric composition were all shown to affect starch functionality. Elevated temperature led to the most significant changes in both tropical and temperate cereals and amylose content was the most sensitive parameter under various environmental conditions. Genotypic variation appears to be a primary contributor for the response of cereal starches to environmental stress. Nonetheless, while a large amount of data from single controlled environmental stress experiment is currently available, comparably little is known about whether similar results would be achieved in multifactorial and large-scale settings. The challenges in terms of the need for more detailed experimental descriptions to lessen the study-to-study discrepancies of data and to enhance their interpretability were also discussed.

Keywords:
Endosperms / Environmental stress / Starch composition / Starch functionality

1 Introduction

The amount, composition, and unique molecular structure of modern-day commercial cereal starches are the result of careful agricultural management [1] combined with 1000s of years of selection for desirable germplasm [2–6]. Cereal starch now makes up 50% or more of the diet of many people [7, 8] and its role as a source of calories is well understood. The diversification of starch as a functional food [9, 10], biopolymer [11, 12], and biofuel [13]; however, is expanding rapidly. These applications often function efficiently with optimal cost-benefit ratio when starches of specific physico-chemical properties are used [10, 14]. It is well established that the environment has a large effect on both starch biosynthesis [15] and properties [16], and that in future years, environmental changes will become increasingly unpredictable [17–21]. Some growers are already faced with changes in planting seasons, higher than average night temperatures, decreased water availability, and deteriorating soil quality, which can alter starch accumulation and physical characteristics, making the grain and flour quality less desirable for some intended downstream uses [22]. In addition to sustained modifications of the climate in some cultivated areas, episodic stresses may also occur, changing product quality even in the absence of pronounced reductions in grain yields. Anticipating these changes may help each group along the supply chain to better plan and target suitable markets for these “stressed products” [23]. A comprehensive review on this topic was last published 12 years ago by Tester and Karkalas [16], since which there have been voluminous...
literature on how growth environments affect starch functionality. In addition, there has been a recent and intense focus on predicting how environmental changes will affect agricultural productivity and the quality of food [23]. This review seeks to update our current knowledge in the field.

2 Starch structure and composition

Starch is the main carbon reserve in cereal endosperm, accounting for 50–90% of dry matter in the tissue [24–28]. It is deposited as discrete particles, of which the size, morphology, and relative numbers are strongly dependent on genetic, developmental, and environmental factors [25, 29, 30]. The diverse uses of storage starches are facilitated by the wide array of molecular structures that exists [31, 32]. For a more comprehensive understanding of starch molecular structure and composition, readers are referred to these reviews [27, 33], as only a brief description will be given here.

Starch consists of chains of α,1,4-linked D-glucose units of different lengths that are interconnected by α,1,6-linkage branchpoints. These chains are organized into two glucan polymers called amyllose and amylpectin in a 30:70 of the dry weight of starch respectively in non-mutant cereal endosperm [27, 34]. Amylose has a MW of $10^6$–$10^7$ Da and consists of α,1,4-linked glucoses that are branched by α,1,6-linkages every $200$–$10,000$ glucoses [27, 35]. Amylopectin in contrast is larger, of MW $10^7$–$10^8$ Da, and the α,1,4-linked glucan chains are branched at approximately every 20 glucoses [35]. The branching in amylpectin is defined, and leads to a recognizable pattern of glucan chains of defined lengths arrayed into alternating concentric crystalline and amorphous lamellae [33, 36, 37]. Adjacent α,1,4-linked glucan chains associate to form helical structures giving rise to crystalline lamellae, while the α,1,6-branchpoints are found in the amorphous region [33, 35]. Amylose appears to be randomly arrayed into amylpectin in the crystalline lamellae [31] through cross-linking of the two polysaccharides [33, 38]. The lipids content in cereal starches are comparatively high and is found complexed with amyllose, although some proportion of amyllose may have no associated lipids [39].

3 Relationship between starch structure and functionality

The functional behavior of starch is intricately linked to its structure and morphology. Changes in the proportion of amyllose to amylpectin, glucan chain length distribution, degree of crystallinity, or granule size distribution can alter starch physico-chemical characteristics [31]. The organization of the crystalline lamellae influences the water-uptake property of starch, while the relative proportion of amyllose and the structural organization of the amylpectin molecules are important for starch thermal property and gelatinization [31], as is the lipid complexed with amyllose [40]. Starch is usually cooked wet or dry before consumption, which disrupts granule crystallinity [10, 31]. The ensuing solid-gel phase transitions in large part determine texture and eating quality attributes [31]. To assess starch functionality, parameters such as starch swelling power, viscosity, gelatinization, and retrogradation are used to predict potential applications and quality [10]. Although identifying an exact relationship between starch structural composition and its processing properties remains inconclusive [31], in this section, we provide a snapshot of such relationship based on these functionality parameters. For a more illustrative review on the topic, readers are referred to [31, 41, 42].

3.1 Starch swelling power

At the onset of starch gelation, water ingresses into the granules, making them “swell.” The swelling pattern occurs in two phases, first in the amorphous core of the granule, and second in the semicrystalline lamellae when most of the amyllose molecules have leached out of the granules [41, 43, 44]. The presence of the amylose-lipid complex and the aggregated amylose molecules is responsible for restraining swelling events [39, 41]. Small granules were found to have higher water absorbability compared to the large granules, due potentially to the differences in the way the glucan chains are ordered [45], and the higher surface area per unit weight of the small granules [46, 47].

3.2 Starch viscosity

Viscosity occurs during gelatinization when, mainly, amyllose leaches from the starch granule and forms a matrix on the exterior surface of the granule [31, 39]. This matrix holds water and along with the unwinding of amylpectin helices [48], increases the viscosity of the mixture [31, 48]. Using rapid viscosity analysis (RVA), the paste viscosity can be observed throughout the gelatinization process. Paste viscosity reaches its maximum when all granules are swollen, but still intact [31, 49], and once the granules break down and the polysaccharides become dispersed in the medium, the paste viscosity diminishes [31]. Paste viscosity rises again once the temperature lessens until it reaches the final point (aka “setback”) [31]. Starch with low amylose content will have high peak viscosity [31, 50], and low setback viscosity, reflecting the diminished amyllose gel network [50]. The complexes of amyllose and lipid increase the peak viscosity temperature in maize, rice, wheat, and barley starches [50]. Smaller granules have lower peak viscosity and breakdown, but higher peak viscosity temperature in comparison to the larger granules [51].
3.3 Starch Gelatinization

Gelatinization is described as the phase transition of the starch granule in the presence of heat and excess plasticizer, typically water [41]. The internal structure of the granule breaks down, leading to granule disassembly and leaching of the polysaccharides into the medium [52]. An irreversible loss of crystallinity only occurs when the temperature reaches the threshold where both the interactions among the neighboring amylpectin side-chains and between the side-chains of the double helices are lost [53]. This temperature is, however, varied according to the composition of starch [50] and the abundance of water [54, 55]. A high degree of crystallinity provides structural stability, making the granules less susceptible to gelatinization and is reflected in higher transition temperature [56]. Amylose content, in general, is negatively correlated with gelatinization temperature [31, 57]. Starches with higher proportions of long amylpectin side-chains [50], greater amount of amylose-lipid complexes [50], or smaller granules [45, 47] exhibit low gelatinization temperatures. However, a strict correlation between starch granule size and gelatinization behavior was not universally found [58].

3.4 Starch retrogradation

Retrogradation of gelatinized starch occurs when the amylose and amylpectin molecules realign and interact to create more crystalline molecules as the starch cools [59]. This negatively affects the storage [41] and freeze-thaw stability [48] of starch in industrial applications. Low amylose content [53, 60], high proportions of small side-chains amylpectin [41], low lipid content [50], and large granule size [47] prevent starch from retrograding.

4 Effect of the environment on starch structure and functionality

The structure and composition of starch are important indicators of the quality and palatability of food [6, 61, 62] and its healthful benefits [63], the nutritional value of cereal grains as an animal feed [64, 65], its suitability as a feedstock for biofuels (Tanadul et al., submitted for publication) and [66], and the variety of biopolymers that can be synthesized from any botanical starch source [67]. Starch functionality is in turn affected by, in addition to genotypes, growing season temperature, rainfall patterns and humidity, growth locations, and sustained or episodic environmental stresses [61]. In some instances, year-to-year variations in weather [68], shifts in planting seasons [14], or growth in various locations [69–72] may sometimes have a greater influence on starch functionality than genotypic differences. The environment alters starch by acting on sensitive starch biosynthetic enzymes, i.e., those involved in substrate production, the elongation of the α-1,4-glucan chains and their branching, and the maintenance of granule crystallinity [15]. These enzymes form interdependent complexes that cooperatively synthesize starch [73, 74]. Changes in the spectrum of enzymes in these complexes will substantially alter the structure and composition of the granules [15]. The starch biosynthetic enzymes in different genotypes are affected differently by changes in environmental conditions [15]. The readers are referred to the recent review [15] on the topic for more detailed information. Here we review the effects of a variety of stresses on starch structure, composition, and functionality in cereals.

4.1 Temperature extremes

Temperature has long been known as a critical element determining agricultural productivity. It is almost impossible to control this factor in the field and so it is among the most pernicious [17]. Future climatic predictions all suggest that on average, higher temperatures will be the new norm [22] and as a result, the effect of elevated temperatures on crop productivity has been extensively studied [17]. An interesting but neglected corollary is that higher temperatures in some regions can be directly linked to a cooling trends in other regions [75], and crops in the latter areas may be increasingly subjected to chilling stress.

4.1.1 Heat

High air and soil temperatures are the primary stressors that reduce grain starch production and alter starch functionality [16, 76, 77]. The optimum temperatures for “normal” grain filling vary by species [22], and there may also be diurnal variations in heat sensitivity with higher night-time air temperature (NTAT) having a larger effect on rice starch quality [14, 78]. High growth temperature decreased amylose content in maize [79] and increased it in wheat [80–86], but the magnitude of these changes were neither as significant nor as consistent compared to Japonica rice where amylose may be reduced as much as 20% at temperatures above 30 °C [87–95]. Indica rice amylose, however, appears to be more stable at high temperature, with some types showing minor or no change [90, 96–99]. Naturally low-amylose Indica [96, 97, 99, 100] and Japonica [101] rices had greater reductions in amylose when compared with inherently high-amylose genotypes exposed to elevated temperatures. Nevertheless, seemingly minor changes in amylose may still be consequential for functionality, since a 1% variation in amylose effectively altered starch gelatinization and pasting properties in some flours [80, 102]. In contrast to maize, wheat, and rice, there was no substantive evidence for consistent changes in amylose content in normal barley [16, 76, 103] and sorghum [70, 104] grains exposed to high temperature. This response may be due to the intrinsic nature
of these species, or point to the limited diversity of genotypes studied, given that the amylose content in naturally high-amylose barley was reduced by elevated temperatures [103]. Caution must be hence taken before making predictive generalizations of the ensuing starch properties without exhaustive analyses on a divergent set of genotypes.

The chain-length distribution of amyllopectin glucan chains may also be modified in the endosperm starches experiencing heat stress. The long glucan chain fraction in most [69, 77, 87, 91, 92] but not all [93] rice varieties increased. Conversely, the trend in wheat is toward the accumulation of shorter glucan chains [82, 83], while a single report for sorghum suggests it responded similarly to rice [104]. There have been limited studies in maize, and there appears to be no propensity to synthesize either longer or shorter chains when an array of cultivars were exposed to high temperature stress [79].

High growth temperatures alter starch granule size, shape, and structure, and may also cause pitting and fissures, with the extent determined by the severity and time of stress application [81]. In wheat [80, 83, 86, 105, 106] and barley [107], the size of both A- and B- granules decreased, with the proportion of the large A-granules increasing at the expense of the small B-granules. The size of wheat A-granules was disproportionally affected when the heat stress was applied close to anthesis [81]. Heat also caused reductions in granule size in sorghum [104], rice [108], and normal maize [79], while in waxy maize granule size enlarged [109].

Rice grain appearance changes detrimentally at elevated growth temperature, whereby the translucent grain becomes chalky [92]. Besides being visually unappealing, these grains are difficult to polish, easily fractured during milling, and become stickier when cooked [92], making them less desirable in many Asian markets [93, 110, 111]. Changes in amyllopectin chain-length distribution may contribute to grain opacity [92, 111, 112], but granule physical factors are also important [93, 108]. Chalky sectors of the grain have aberrantly-shaped starch granules interspersed with numerous air pockets [93, 94, 111], which allow increased water absorption and thus granule swelling power during the cooking process [113].

Starches from rice [71, 88, 89, 91, 114], wheat [82, 84], maize [115, 116], and barley [117] experiencing elevated growth temperatures generally showed higher gelatinization temperatures. Heat stress also altered starch pasting profiles in wheat [81], maize [109, 115], and rice [99].

4.1.2 Cold

Generally, there were increases in the ratio of amylose to amyllopectin in the grain of rice grown in controlled low temperature environments [114], cooler field locations [69], and colder seasons [61]. Similar results were also seen in wheat [118, 119] and maize [120]. There have not been many in-depth analyses of starch functionality on cold-treated cereals, nonetheless, gelatinization and pasting temperatures generally decreased in most [69, 121] but not all [118] studies. In the field study by Dang and Copeland [61], several rice cultivars had a lower peak viscosity and greater setback of the rice flour when ambient temperatures were reduced. Even in barley where no significant changes in the amylose to amyllopectin ratio were found when plants were exposed to low temperatures in controlled conditions [122], in the field in which a complex interaction of environmental factors could play a role, barley starches that developed during a cool summer had altered granule size distribution, lower lipid content, and lower peak gelatinization temperature [121]. These starches also showed greater amylolysis in vitro, indicating changes in the molecular structure of starch [121].

4.2 Soil moisture and nutrient composition

Soil physical structure, osmotic properties, and chemical composition can influence grain starch. Although modern agriculture emphasizes drip irrigation, cereal production in many regions is still rain-fed [123]. Poor agricultural management of soils and high radiation together are increasing soil salinity [124]. Increasing social, political, and economic pressures to reduce chemical inputs for agriculture suggests that growers will be more judicious in terms of the rates and amounts of fertilization applied. How these elements change grain starch properties are considered in this section.

4.2.1 Water deficit

Inducing a moderate water deficit in cereals can cut starch accumulation by up to 40%, leading to changes in starch composition, structure, and functionality [15]. In several studies in wheat [119, 125–127] and rice [128–131], amylose content was significantly lower, while barley starch appeared to be more resistant [132]. Starch granule size distribution in wheat was altered, with a higher proportion of A-type granules detected and this was commensurate with fewer B- and C-type granules [126, 127, 133–135]. However, rain-fed wheat with variable watering through development and overall lower soil moisture content compared with that of the irrigated control, had a higher proportion of B- and fewer A-granules, suggesting the timing of the stress may also be critical [125]. Starch granule size distribution in barley endosperm was more resilient with changes only evident under long-term water stress, following a similar pattern to that seen in wheat [132, 136, 137]. Inspite of that, under drastic water deficit, i.e., 4% soil moisture content for 20 days, barley starch granules were eroded due to premature degradation [137].

Restricting watering to rice and wheat was shown to alter starch functionality, especially the pasting properties. In rice,
although there was some variation in the two phenotypically divergent cultivars studied, generally, water stress increased flour swelling power, peak viscosity, cohesiveness, gel hardness, and granular breakdown [128, 129]. There was also an increase in grain chalkiness and milling properties in another study [131]. In wheat, water deficit during growth reduced grain starch-lipid content and increased pasting temperature, causing higher viscosity and setback [126, 127]. Similar results were seen in field-grown wheat that underwent different seasons and plots that were irrigated vs. rain-fed [119, 125].

4.2.2 Salinity

Salinity stress effects on starch functionality have been studied in rice and triticale. Rice is highly sensitive to saline soil but the response is not influenced by the salt-sensitivity of the cultivar [138, 139]. There also appears to be great genetic variability for this trait [138, 139], and the type of salt used may have a greater effect on starch structure than the salt concentration [138]. Of the two genotypes studied by Peiris et al. [138], amylose was only altered in Pokkali and this was only observed when plants were exposed to high chloride ions, whereas there was no apparent effect found in other salts studied. Despite changes in amylose content, gelatinization temperature remained constant [138]. However, apparent amylose content in IR5929 was not affected, but gelatinization temperature was lower under all salt concentrations [138]. These experiments materially illustrate the specificity of the response, depending on the salt-type and concentration, as well as the genotypes studied.

In the only other major study, Siscar-Lee et al. grew four basmati rices in a field where the soils were saturated with 40 mM sodium chloride. Three out of four genotypes accumulated less apparent amylose, but there was no indication that starch gelatinization nor paste viscosity was affected by the treatment [139]. Grain translucency was reduced and cooking hardness increased in some cultivars [139], suggesting that saline soils may affect rice cooking and eating properties, even though the specific effects on starch molecular structure were unclear [138].

Triticale starch exposed to 50, 100, and 200 mM sodium chloride at grain initiation had a higher proportion of larger A-granules, higher amylose and lower gelatinization temperatures, namely lower peak and conclusion temperatures [140]. At 100 and 200 mM sodium chloride the granules surface was studded with indentations [140].

4.2.3 Nitrogen deficiency

Variation in soil nitrogen (N) usually has direct consequences for the starch-to-protein ratio in grain, which would suggest ramifications for starch functionality [141], although several studies demonstrated that the effect on starch is unpredict-
(900 ppm) [161] concentrations of CO₂ did not change grain amylose content. These variable results were also seen in considerably large number of studies in rice [162]. In the various published works reviewed by Wang et al. [162], five cultivars showed no change in amylose, four cultivars had elevated amylose, while one cultivar had decreased values at elevated CO₂ [163–170]. This disparity could be explained in part by differences in experimental design, but genotype may still have an outsize effect. Madan et al. [96] exposed three distinct rice cultvars to the same concentration of CO₂ and found that only one of the three cultivars had changes in amylose content [96], supporting the genetic background as a major contributory factor.

The influence of CO₂ on starch granule size has been best studied in wheat, but there was again, no accordance in the results obtained from different studies. At 550 ppm CO₂, a higher proportion of the large A-granules accumulated in Hartog [160], whereas in a separate study at 900 ppm CO₂, there was a decrease in the proportion of A-granules in this cultivar [161]. This suggests that CO₂ concentration was the primary determinant of the differential effect in Hartog, though this may be an oversimplification. When Hartog was compared with another cultivar Rosella at 900 ppm CO₂ [161], the latter did not change in granule distribution, again indicating that genotype is playing a major role in the variable results shown in wheat.

Notably, very few studies have been done in other cereals besides rice; however, changes in starch functionality to high CO₂ in this species showed little consistency [162]. There were changes in the proportion of chalky grains, the area of chalkiness in the grain, and the degree of chalkiness in some studies, but not in all [162]. There was also great variation in gelatinization temperatures and viscosity in high CO₂ rice starches, so no exact pattern could be ascribed [162]. Rice starch gel consistency was the only parameter that gave similar results in all studies, and it remained unaffected by elevated CO₂ [96, 162]. These data underscore the difficulty in painting a comprehensive picture of how starch is affected in plants grown under high CO₂.

### 4.3.2 Elevated O₃

There are very limited accounts of how higher O₃ affects grain starch. Of the three published studies available, there was no change in the amount of starch accumulated in the wheat grain in one study [171], while it decreased in the other studies in wheat and rice [159, 172]. Nevertheless, O₃ reduced grain yield in several studies [158, 159, 173–178], which would imply that starch content and functionality could also be altered.

The most extensive study on how O₃ affects starch functionality was done in rice [179]. Plants were exposed to 5% v/v O₃, which is 25% higher than ambient level, using free-air gas concentration enrichment in two consecutive years [179]. Amylose was only reduced in 1 year, while gel consistency remained unchanged [179]. Chalky grain percentage, gelatinization temperature, and setback values increased in response to O₃ [179], suggesting that elevated O₃ could cause substantive changes to rice cooking and sensory properties through alterations in starch.

### 5 Challenges in understanding the effect of environments on starch functionality

There have been great discrepancies in the data reported from different studies, and their interpretation should be done with caution because they may be due to extraneous factors, independent of the applied environmental stress [16]. Comparing a wide array of cereal genotypes at divergent developmental stages would be expected to generate significant differences among the data observed. In addition, variations in treatment concentration, period (long-term vs. short-term stress), time of application, as well as treatment stability are crucial for determining grain starch composition and functionality. These factors hence require careful consideration when designing stress experiments on cereal starch quality. Since reproducing similar experimental conditions in individual laboratories, greenhouses, or chambers is likely to be impossible, recording and reporting the environmental variables that the plants were exposed to would be important for data interpretation and comprehensibility. In this section, we wish to emphasize some interactors that could have profound effects on starch functionality, and could come into question when interpreting the environmental stress experimental data.

#### 5.1 Crop genetic variations

Although the growth environment is consequential for starch synthesis, most of the work we have reviewed here showed that genotypic background is a critical contributory factor for starch functionality parameters [103, 123, 150, 180]. Some genotypes may vary in their inherent resistance to abiotic stress. For example, there may be differences in the spectrum of starch biosynthetic enzymes tolerant of poor conditions. Studying how the starch in cultivars with contrasting compositional and structural features (e.g., waxy vs. non-waxy starches) changes when grown under stress may offer novel insight into starch chemistry and biology [103]. Studying how a broad spectrum of cereal genotypes from highly tolerant to highly sensitive types responds to stress may also inform on the mechanisms for maintaining granule stability.

#### 5.2 Grain developmental stages

The effect of extreme environments is generally greatest during grain initiation and early grain filling due to the interference of sensitive cell physiological and biochemical
5.3 Extraneous factors

The circumstances faced by plants during their growth often affects physiological and biochemical processes, and may either maximize or lessen the observed changes in starch composition and functionality due to the treatment effect. This could be problematic when the array of phenotypes, which could be potentially observed, is masked by variation in growing environments.

5.3.1 Light

Both the source and intensity of light can influence starch deposition. In barley, mercury lamps gave lower light intensity compared with sodium lamps, and this led to unexpected differences in starch such as, the abolition of diurnal growth rings in the granule, modulations in amylose, and granule numbers and size [117]. Low light intensity also changed granule size distribution in wheat [184], and decreased viscosity parameters in waxy maize starch [185].

5.3.2 Diurnal temperature

Both elevated day-time temperature alone [98–100] and elevated day- and night-time temperatures [93, 95, 186] at grain filling have been long shown to affect rice starch composition and cooking properties. However, elevated NTAT alone was recently proved to significantly affect rice grain qualities both in the field [182] and in controlled environmental growth conditions [187]. The importance of elevated NTAT on rice grain quality was insightfully emphasized in a recent review [14].

5.3.3 Soil temperature

Guedira et al. showed that high temperature applied to root caused alterations in grain starch quality, distinct from the degree and compositional aspects recorded when high temperature was applied to the shoot [188]. This points to the notion that the soil temperature measurement should be taken into account when designing temperature stress experiments.

5.3.4 Irrigation regime

A water-saving irrigation regime altered several grain quality parameters in comparison to the conventional irrigation in China [131]. The same was found in wheat in studies where there were differences in the periodicity of watering [119, 125]. Therefore, the way plants are irrigated influences grain starch functionality experiment.

5.3.5 Nutrient supplementation

Applying various amounts of nutrients at varying rates and in different combinations may contribute to differences in starch structure and functionality. For example, varying the dose and rate of N and sulfur fertilization in wheat had a pronounced effect on both pasting and thermal properties of starch [149]. High phosphorus fertilization was also found to alter starch functionality in wheat [189].

5.3.6 Wind

The effect of wind on grain starch quality is not widely studied; however, applying a dry-wind treatment at the grain filling stage led to an increase in chalky rings in rice kernel, thus reducing its quality [190].

5.4 Combinatorial stresses

Most studies examining the environmental effects on cereal starch functionality have focused on a single type of stress, while in the field, the plants are likely to be concurrently exposed to several types of stresses, which may pose more confounding effects on grain biosynthetic processes [191]. It is often difficult to predict the effect of combinatorial stress based on the effects seen when each stress is individually applied. Combining drought and high temperature stresses in spring wheat [192], and water and heat stresses after anthesis in winter wheat [133], caused a greater effect on starch yield and quality than that of either stress alone. Wild and cultivated barley grain subjected to drought and salt stresses also caused irregular granule packing characteristics when compared to starch that had undergone either drought or salt stress alone [137]. Nonetheless, in another combinatorial study, wheat starch content and thermal property were strongly affected by elevated temperature, with very little effect when CO₂ concentration was increased in concert [84]. Elevated CO₂ alone had a positive impact on rice cooking quality; however, with N supplementation, no significant changes in starch properties were found [168]. These examples therefore suggest a possible interaction between treatments when two or more stresses are present. This should encourage more investigation of the impact from various stress combinations on starch functionality in all major cultivated cereals in spite of the associated expenses.
5.5 Field studies

Stress studies conducted in controlled-environment greenhouses or chambers may or may not yield the same degree of alterations in kernel starch composition and functionality if conducted in a field experiment. A study of 27 rice cultivars grown in the cold and hot regions in the US yielded the same findings in terms of starch composition and thermal properties when compared to the non-field studies conducted by other researchers [69]. Nevertheless, triticale grain starch was not significantly influenced by locations, rather, cultivars and growing year made a remarkable impact [142]. Extrapolating data from non-field studies to large-scale and long-term cereal cultivation in the fields may not be accurate and more of the field-type stress studies are required to ensure the applicability of the stress research data to commercial settings.

6 Conclusions

Starch structure is directly related to its physico-chemical property, which largely determines its quality in downstream applications. This could be heavily modulated when plants encounter harsh environment during the growing seasons. If the growing environment alters the compositional parameters of starch, the downstream processing of these starches for specific application may need to be adjusted to maintain product quality [16], which could result in lower efficiency and higher cost. While there is a need of comprehensive understanding of how starch functionality is affected by certain environmental factors mentioned above. It is essential to expand the repertoire of genotypes studied to identify those resistant to stress and which could be implemented into breeding program. The combinatorial nature of environmental extremes plants are confronted with in the fields also adds to the need for both multiple stresses treatment and field studies. Acquiring a more comprehensive understanding of how the environment affects starch quality could help both local and international growers, and industrial sectors to come to terms with how “stressed starch” could be utilized and marketed in this era of variable climatic patterns.

Work on cereal starch biosynthesis in DMB’s lab is supported by California Hatch Project CA-D*-PLS-7198-H. MT acknowledges support from the Royal Thai Government and the Henry A. Jastro Graduate Research Award.

The authors have declared no conflict of interest.

7 References


[58] Li, J. Y., Yeh, A. I., Relationships between thermal, rheological characteristics and swelling power for various starches. *J. Food Eng.* 2001, 50, 141–148.


