Title
The Use of an Ultrasonic Serrated Knife in Transcanal Excision of Exostoses

Permalink
https://escholarship.org/uc/item/9qz3x2fp

Journal
OTOLOGY & NEUROTOLOGY, 37(9)

ISSN
1531-7129

Authors
Haidar, YM
Ajose-Popoola, O
Mahboubi, H
et al.

Publication Date
2016-10-01

DOI
10.1097/MAO.0000000000001170

Peer reviewed
The Use of an Ultrasonic Serrated Knife in Transcanal Excision of Exostoses

Yarah M. Haidar, Olubunmi Ajose-Popoola, Hossein Mahboubi, Omid Moshtaghi, Yaser Ghavami, Harrison W. Lin, and Hamid R. Djalilian

Department of Otolaryngology—Head and Neck Surgery; and Department of Biomedical Engineering, Division of Neurotology and Skull Base Surgery, University of California, Irvine Medical Center, Irvine, California

Objective: To describe a novel approach for excision of exostoses and evaluate the outcomes of transcanal excision of exostoses using ultrasonic serrated knife-assistance versus microosteotomes only.

Study Design: Retrospective analysis.

Setting: Academic Tertiary Care Center.

Main Outcome Measures: The outcomes and postoperative complications of 138 patients who received transcanal microosteotome only technique were compared to 10 patients who received transcanal excision of exostoses using ultrasonic serrated knife-assistance (Stryker Corporation, Kalamazoo, MI).

Results: A total of 175 ears in 128 patients underwent a transcanal microosteotome only technique. Of these, 11 (6.3%) developed an intraoperative tympanic membrane perforation. One developed an anterior canal mobilization requiring prolonged (3 wk) packing. One hundred thirty-five ears (77%) were well healed by the 3-week postoperative visit. All but one ear was well healed by the 6-week visit. In comparison, 11 ears in 10 patients were treated for exostoses using a transcanal approach with the use of ultrasonic serrated knife and microosteotomes. One ear canal (the first in the series) was not well healed by the 3-week postoperative visit due to suspected thermal injury. All patients had well-healed ear canals by 6 weeks, and there were no complications.

Conclusion: This is the first series to report the use of an ultrasonic serrated knife in the transcanal excision of exostoses. When compared with a transcanal microosteotome only excision of exostoses, the addition of the Sonopet seems to result in a similarly low complication rate. Sonopet can allow for more controlled transcanal excision of broad-based exostoses in patients with severe obstruction.

Key Words: Ear surgery—Exostoses—Microosteotome—Osteoma—Sonopet—Transcanal—Ultrasonic knife.

objective is to critically analyze the safety and viability of the use of Sonopet in the transcanal excision of exostoses.

METHODS

A retrospective analysis of all patients with exostoses treated with a transcanal excision only by the senior author was performed. Patients were identified using International Classification of Diseases (ICD-9-CM) diagnosis codes for ear canal exostosis 380.81 and Current Procedural Terminology (CPT) codes for exostosis removal (69140). This study was approved by our institutional review board. The EAC stenosis was graded based on the surgeon’s intraoperative microscopic assessment of the ear. Grades of complete obstruction (100%); severe (95–99% obstruction), moderate–severe (80–94% obstruction), moderate (60–79% obstruction), and mild (<60%) were assigned. A presurgical and postoperative audiometry was performed for all patients.

The detailed operative procedure of a transcanal microosteotome only excision of exostoses was described in our previous article (14). The same method was applied when the transcanal excision of the exostoses involved the Sonopet. The Sonopet Ultrasonic Aspirator (Stryker Corporation, Kalamazoo, MI) with a serrated knife attachment (Sonice Control Serrated Aggressive Knife, Ref 5450-815-114) was used in a transcanal approach, in combination with 1 and 2 mm osteotomes, to incrementally remove exostoses. Its dimensions are approximately 2 mm × 0.8 mm (Fig. 1). If the exostoses were noted to be near obstructive and broad based or if there were bony exostosis edges noted after microosteotome excision, a Sonopet was used as the microosteotomes can create unpredictable lines of fracture. The Sonopet was used to initiate a cut in a broad-based exostosis, to split a large exostosis in half to allow for visualization, or to smooth the base of an exostosis after microosteotome excision.

To summarize operative technique, an operative microscope and otic speculum are used to visualize the EAC. A lateral to medial approach is used in the excision of the exostoses. An angled round knife is used to make an incision over the EAC skin on the lateral aspect of the exostoses. A duckbill elevator is used to elevate the skin over the exostoses. Once the extent of the exostosis is exposed, a Sonopet knife can be used to start the excision of the exostosis (Fig. 2). Aluminum foil is used to protect the EAC skin. Subsequently, 1 and 2 mm osteotomes are used to chisel the exostoses (Fig. 3). Once the TM is visualized, it is protected with small pieces of ofloxacin-soaked Gelfoam. This is performed sequentially to remove all of the exostoses. Alternatively, the Sonopet can be used to smooth bony edges after microosteotome excision. A 0.005 inch silastic sheet was placed in the canal in the form of a stent. The patients were seen postoperatively at a 3-week visit, 6-week visit, and sequentially thereafter until complete healing was achieved. Postoperative audiometry was obtained at approximately 6 weeks, and the pure-tone average (PTA) was compared to preoperative audiometry.

A Fisher’s exact test was used to determine if there was a statistically significant difference between complications and short-term (3 wk) EAC healing when using Sonopet versus no Sonopet. A paired t test was used to compare the average preoperative and postoperative PTA. A p value of <0.05 was considered statistically significant.

RESULTS

A total of 148 patients (186 ears) between 2007 and 2016 had a transcanal excision of exostoses using microosteotomes or Sonopet and microosteotomes. Of those, 138 patients (175 ears) underwent excision of exostoses using transcanal microosteotome technique only. Ten
patients underwent transcanal excision of exostoses with the addition of an ultrasonic serrated knife for a total of 11 ears. Patient characteristics are shown in Table 1. A large proportion of ears treated had greater than 80% stenosis with the exact rates of preoperative stenosis shown in Table 2.

Of the patients treated with transcanal microosteotome only excision, 12 of 175 (6.8%) developed a complication. Eleven patients developed a slit tympanic membrane perforation. Of these, eight required repair with a fascia graft while three were treated with Gelfoam alone intraoperatively. All of the perforations were healed by the first postoperative visit. One patient developed anterior canal mobilization which required prolonged Xeroform packing for 3 weeks. In this patient, the rest of the exostosis was removed with drill to avoid further destabilization.

In comparison, 0 out of the 11 ears treated with the additional use of Sonopet developed a complication (Table 3). The numbers of ears that exhibited good healing at the 3-week and 6-week postoperative visit are shown in Table 4. In the transcanal microosteotome only group, four ears developed a small adhesion/scar band between the anterior canal and antero-superior quadrant of TM that did not cause a hearing loss and was left untreated. One ear (the first in our series) in the ultrasonic serrated knife group had evidence of exposed bone in the EAC on evaluation at the 3-week postoperative visit, which was suspected to be due to thermal injury from the ultrasonic knife. This patient had well-healed EAC on examination at the 6-week postoperative visit.

Of the patients treated with transcanal microosteotome excision only, 98% demonstrated no change or improvement in postoperative audiometry when comparing the PTA to preoperative audiometry. All patients in the Sonopet group demonstrated no change or slight improvement in audiometry. The average change in the PTA postoperatively was an improvement of 4.3 dB, which is not statistically significant ($p = 0.112$). No patient in the group treated with the ultrasonic serrated knife developed hearing loss or tinnitus postoperatively.

There was no difference in the complication rate when ultrasonic serrated knife was used in addition to the microosteotomes ($p = 0.470$). The healing rate was equivalent in the two groups ($p = 0.080$). Since the use of the ultrasonic serrated knife seems to be most beneficial in the most obstructive exostoses, we compared the rate of complications in patients with >95% obstruction. Of those treated with transcanal microosteotome excision, 11 of 116 ears (9.5%) developed an intraoperative complication. In comparison, 0 of 11 ears who had Sonopet for excision of exostoses developed complications ($p = 0.424$).

DISCUSSION

The use of ultrasonic serrated knife has not been described in the treatment of EAC exostoses. The authors present a short surgical series on the novel use of this device for transcanal exostoses excision. The ultrasonic serrated knife can be useful in initiating the cut in broad-based exostoses where there is a fear in using microosteotomes that could mobilize the EAC or in smoothing the base after microosteotome excision of an exostosis. We further compared the outcomes and complications of these patients to those patients who received a transcanal microosteotome only technique. Our experience supports that the additional

TABLE 1. Patient characteristics and extent of exostoses

<table>
<thead>
<tr>
<th></th>
<th>Microosteotomes Only</th>
<th>Sonopet With Microosteotomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>138</td>
<td>10</td>
</tr>
<tr>
<td>Mean age (yr)</td>
<td>44.2</td>
<td>44</td>
</tr>
<tr>
<td>Age range (yr)</td>
<td>19–75</td>
<td>23–60</td>
</tr>
<tr>
<td>Sex</td>
<td>Male 130</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Female 8</td>
<td>1</td>
</tr>
<tr>
<td>Laterality</td>
<td>Right 45</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Left 46</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bilateral 42</td>
<td>1</td>
</tr>
<tr>
<td>Total ears</td>
<td>175</td>
<td>11</td>
</tr>
</tbody>
</table>

TABLE 2. Preoperative stenosis (percentage in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>Microosteotomes Only</th>
<th>Sonopet With Microosteotomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>70 (40.0%)</td>
<td>8 (72.7%)</td>
</tr>
<tr>
<td>95–99%</td>
<td>46 (26.3%)</td>
<td>1 (9.1%)</td>
</tr>
<tr>
<td>80–94%</td>
<td>52 (29.7%)</td>
<td>2 (18.2%)</td>
</tr>
<tr>
<td>60–79%</td>
<td>7 (4.0%)</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 3. Surgical complications (percentage in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>Microosteotomes Only</th>
<th>Sonopet With Microosteotomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slit TM perforation</td>
<td>11 (6.3%)</td>
<td>0</td>
</tr>
<tr>
<td>Anterior canal mobilization</td>
<td>1 (0.6%)</td>
<td>0</td>
</tr>
<tr>
<td>Vertigo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Facial paralysis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Soft tissue stenosis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of complications</td>
<td>16 (9.1%)</td>
<td>0</td>
</tr>
</tbody>
</table>

TM indicates tympanic membrane.

TABLE 4. EAC healing (percentage in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>Microosteotomes Only</th>
<th>Sonopet With Microosteotomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of EACs well healed by 3 weeks</td>
<td>135 (77.1%)</td>
<td>10 (90.9%)</td>
</tr>
<tr>
<td>Number of EACs well healed by 6 weeks</td>
<td>174 (99.4%)</td>
<td>11 (100%)</td>
</tr>
<tr>
<td>Adhesion/scar bands</td>
<td>4 (2.3%)</td>
<td>0</td>
</tr>
</tbody>
</table>

EAC indicates external auditory canal.
use of this device in the transcanal excision of exostoses in select cases is a safe and valid option for treating exostoses through a transcanal approach.

Challenges in intraoperative management of exostoses have been well documented in the literature. Multiple intraoperative complications to exostoses have been described, including facial nerve injury, TM perforation, temporomandibular joint injury, anterior canal wall mobilization, and mastoid air cell entry (9,13,14,17). Other postoperative complications include sensorineural hearing loss (SNHL), facial paralysis, TM lateralization, chronic myringitis, wound infection, hematomat/seroma, canal swelling, prolonged healing, exposed bone, canal stenosis, and the need for revision surgery (9,10,13,18). Surgery requires preservation of EAC skin over the exostoses to allow for appropriate EAC healing.

The different described surgical methods for excision of exostoses aim to minimize intraoperative and postoperative complications. The rate of intraoperative complications from the different surgical methods has been shown to be overall low (6,13,19,20). Our standard transcanal excision of exostoses with microosteotome only similarly demonstrates an overall low rate of complications (6.3%) with an even lower rate with the transcanal use of Sonopet (0%), despite this patient population having a higher rate of preoperative stenosis.

SNHL did not occur in either of our populations. Although it is certainly a concern with vibration injury during the drilling process (13,21), it is less likely to be of concern with the ultrasonic system. The ultrasonic serrated knife has decreased sound transmission in the range of human hearing compared with a drill as well as improved tactile feedback. Clinically in our case series, all patients demonstrated no change or improvement in audiometry, without evidence of SNHL. This suggests that the ultrasonic serrated knife offers a novel approach to the treatment of exostoses with low rates of sound or vibration injury.

Postoperative EAC healing and resultant canal stenosis can be of concern when there is inadequate intraoperative skin coverage of the EAC. Minimizing trauma to the native EAC skin during surgery and preserving its vasculature is critical to allow for postoperative EAC healing (13). Although one patient developed thermal injury due to the ultrasonic serrated knife which resulted in slower ear canal healing, our study indicated that the process of ear canal healing was overall unchanged when compared with a microosteotome only technique. This occurred in the first patient in our series.

We think that the ultrasonic serrated knife allows for more controlled excision of broad-based exostoses which can help prevent mobilization of the EAC or inadvertent drifting of the cut due to the lamellar nature of the exostoses. While using the ultrasonic serrated knife, we protected the EAC skin with the use of foil, similar to what has been described in other series where drilling is performed (19,22,23). Overall, all of the patients in our series demonstrated well-healed EACs postoperatively with the transcanal use of Sonopet with an average healing time of 3.3 weeks.
limitations to any retrospective review. Prospective evaluation of this technique with a larger population is necessary to confirm efficacy of this device in exostoses excision. A future study could compare the addition of Sonopet in transcanal versus postauricular approaches. The senior author only performs transcanal excision of exostoses, thus we are unable to perform this analysis. Despite the small population size, this study shows that this device can be a safe and effective method in the excision of exostoses, particularly in near or complete obstruction. It was shown to be at least as safe and effective as a transcanal micro-osteotome only approach.

CONCLUSIONS

The transcanal approach using an ultrasonic serrated knife and microosteotomes is a safe and effective means of removing larger, broad-based exostoses. The patients who had this device used in addition to microosteotomes had a similar complication rate with equivalent EAC healing compared with our patient population who had a transcanal excision of exostoses with microosteotomes only. While thermal injury as a result of this device can rarely prolong EAC healing, the rate seems to be no different than the transcanal micro-osteotome only population. The ultrasonic serrated knife can allow for a safe, more controlled means for transcanal excision of exostoses.

REFERENCES