Title
PION PRODUCTION BY PIIONS

Permalink
https://escholarship.org/uc/item/9s17421j

Authors
Perkins, Walton A.
Caris, John C.
Kenney, Robert W.
et al.

Publication Date
1959-05-22
UNIVERSITY OF CALIFORNIA
Ernest O. Lawrence
Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

PION PRODUCTION BY PIONS
Walton A. Perkins, John C. Caris, Robert W. Kenney,
Edward A. Knapp, and Victor Perez-Mendez

May 22, 1959

Printed for the U. S. Atomic Energy Commission
PION PRODUCTION BY PIONS

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 22, 1959

The existence of a pion-pion interaction has been postulated to explain the nucleon structure\(^1\) and the peak\(^2\) in the \(\pi^-\)-proton total cross section near 1 Bev. The direct interaction of the incident pion and a virtual pion in the meson cloud surrounding the nucleon could contribute significantly to the production of an extra pion in pion-nucleon collisions. In order to study this interaction, we have investigated the reaction
\[\pi^- + p \rightarrow \pi^+ + \pi^- + n \]
in the energy region from 260 to 430 Mev. The \(\pi^+\) meson in the final state provides a unique signature for this reaction, since the highest energies are just barely above the threshold for the production of two secondary pions.

The experimental arrangement is shown in Fig. 1. Negative pion beams produced by the 730-Mev proton beam of the Berkeley synchrocyclotron striking an internal target were magnetically selected and collimated as shown in the figure. The resulting pion beams, with kinetic energies of 260, 317, 371, and 427 Mev and energy spread of \(\pm 2.5\%\), impinged on a 4-inch-thick liquid hydrogen target.

\(^*\)Work done under the auspices of the U. S. Atomic Energy Commission.
The positive pion was unambiguously identified by its characteristic
\(\mu \) decay, by use of the electronic gating equipment described elsewhere. In this experiment the coincidence 12345 triggered the delayed gate which made a coincidence with the \(\mu \) pulse; the energy band of the detected pions was determined by the thickness of the copper absorber placed between counters No. 3 and No. 4. The detection efficiency of the counter telescope was previously determined by using a magnetically analyzed beam of positive pions.

Measurements were taken for \(\pi^+ \) mesons emitted at 60°, 90°, 125°, and 160° in the barycentric system for incident \(\pi^- \) kinetic energies of 317, 371, and 427 Mev; for \(\pi^- \) kinetic energy of 260 Mev only a single measurement was made at 90° (lab). To obtain the angular differential cross section an integration was performed over the energy of the \(\pi^+ \) meson at each angle. The angular differential cross sections are nearly isotropic at 317 and 371 but are peaked forward at 427 Mev. The differential cross sections were integrated over the angle of the \(\pi^+ \) meson to give the total cross sections shown in Fig. 2. The errors shown are the combined errors of counting statistics and of integration over energy and angle.

Recent measurements have been made by Zinov and Korenchenko at incident energies of 307, 333, and 370 Mev for the combined reactions
\[
\pi^- + p \rightarrow \pi^+ + \pi^- + n \quad \text{and} \quad \pi^- + p \rightarrow \pi^- + \pi^0 + p.
\]
These measurements, taken for charged pions emitted at 106° (c.m.), are in reasonable agreement with the results presented here.

The dashed line in Fig. 2 represents the theoretical prediction according to Rodberg and Kazes based on the static model which assumes only a direct pion-nucleon interaction. We interpret the large systematic
discrepancy between this theory and experiment as evidence for a pion-
pion interaction (i.e. here the π^- interacts directly with the π^+ in the meson
cloud surrounding the nucleon).

The following Letter\(^9\) discusses the effect of a pion-pion interaction
on the total cross section for this reaction. The solid line in Fig. 2 shows
the result of including this interaction in the theoretical prediction.

We should like to acknowledge the continued interest and support of
Professor A. C. Helmholz. We also wish to thank Mr. James Vale and
the cyclotron crew for their assistance and cooperation during the course
of the experiment.

References

Figure Captions

Fig. 1. Experimental arrangement (not to scale).

Fig. 2. Total cross section for $\pi^- + p \rightarrow \pi^+ + \pi^- + n$ as a function of the incident π^- kinetic energy. Dashed curve is static-model prediction by Rodberg and Kazes; solid curve is pion-pion interaction prediction by Rodberg.
Fig. 1.
Fig. 2.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.