Lawrence Berkeley National Laboratory
Recent Work

Title
ATOMIC-PHYSICS RESEARCH RELEVANT TO FUSION: D- FORMATION, AND FAST MULTICHARGED ION-ATOM COLLISIONS

Permalink
https://escholarship.org/uc/item/9s38x98j

Author
Schlachter, A.S.

Publication Date
1981-07-01
Presented in the session on Atomic Data Relevant to Fusion at the XII International Conference on the Physics of Electronic and Atomic Collisions, Gatlinburg, TN, July 21, 1981

ATOMIC-PHYSICS RESEARCH RELEVANT TO FUSION: D\(^-\) FORMATION, AND FAST MULTICHARGED ION-ATOM COLLISIONS

Alfred S. Schlachter

July 1981

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Atomic-Physics Research Relevant to Fusion:
D⁻ Formation, and Fast Multicharged Ion-Atom Collisions*

Alfred S. Schlachter
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

July 1981

Presented in the session on Atomic Data Relevant to Fusion at the XII ICPEAC in Gatlinburg, Tennesse (July 21, 1981).

* This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Applied Plasma Physics Division of the U.S. Department of Energy under contract Number W-7405-ENG-48.
Intense beams of D\(^-\) are of interest for the formation of fast D\(^0\) beams for the heating and fueling of magnetically confined plasmas. Methods of creating D\(^-\) beams include charge transfer \(^1\)\(^-\)\(^2\) of low-energy D\(^+\) in a vapour target, backscattering \(^3\) of a D\(^+\) or D\(^0\) beam from a surface, direct extraction from a discharge, and surface conversion in a discharge. The atomic-physics and neutral-beam groups at the Lawrence Berkeley Laboratory have studied all these methods. Results for D\(^-\) formation by charge transfer \(^4\) are shown in Figure 1.

\[\text{Fig. 1 Equilibrium yield } F_\infty \text{ for } D \text{ in various vapour targets.}\]
The high D⁻ yield from charge transfer in a thick cesium-vapor target is consistent with recent cross-section calculations and measurements. Recent theoretical calculations of cross sections in thick alkaline-earth-vapor targets, leading to prediction of a large D⁻ yield at low energy, have been confirmed in recent measurements in which a D⁻ yield of 50% was observed at a D energy of 500 eV.

The energy deposition or ionization profile of a fast D⁰ beam injected into a plasma can be altered by the presence of highly stripped impurity ions which are present in the plasma. In order to estimate how large an effect an impurity ion could have on the trapping profile, it is necessary to know the cross section for electron loss (electron removal) from the hydrogen atom. We have made measurements of electron loss with fast highly stripped ion beams incident on H₂, using the approximation that, at sufficiently high energies, the ionization of H₂ is nearly that of 2 H atoms. The measurements agree very well with classical-trajectory Monte Carlo calculations and with our scaling rule for electron loss, shown in Fig.2.

We have recently extended ionization measurements to multielectron targets. Net ionization cross sections are found to reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state. Furthermore, we have used a time-of-flight coincidence technique to measure recoil-ion charge-state spectra created by passage of a fast highly
Fig. 2 Hydrogen electron-loss cross section $\sigma_{\text{loss}}$. Solid line: calculation for electron loss by atomic H in collision with an ion in charge state $q$; valid for $1 \leq q \leq 50$ and for energy range 50 to 5000 keV/amu. Dashed line: plane-wave Born approximation (ionization only).

charged beam through a rare-gas target. A sample spectrum for 1.4 MeV/amu U$^{44+}$ in Ne is shown in Fig. 3.

Fig. 3 Recoil-ion time-of-flight spectrum for 1.4 MeV/amu U$^{44+}$ in Ne. The Ne recoil charge states $1^+$ to $8^+$ are identified. The small peaks to the left of the larger peaks are due to the $^{22}$Ne isotope.
*Temporary address: Strahlenzentrum, Universit"at Giessen, 6300 Giessen, West Germany.


This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Applied Plasma Physics Division of the U.S. Department of Energy under contract Number W-7405-ENG-48.
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.