Title
Corroles That “Click”: Modular Synthesis of Azido- and Propargyl-Functionalized Metallocorrole Complexes and Convergent Synthesis of a Bis-corrole Scaffold

Permalink
https://escholarship.org/uc/item/9s4558hg

Authors
Buckley, Heather L.
Rubin, Leah K.
Chromiński, Mikołaj
et al.

Publication Date
2014-07-16

Peer reviewed
Corroles That “Click”: Modular Synthesis of Azido- and Propargyl-Functionalized Metallocorrole Complexes and Convergent Synthesis of a Bis-corrole Scaffold

Heather L. Buckley,† Leah K. Rubin,‡ Mikolaj Chromiński,‡ Brendon J. McNicholas,† Katherine H. Y. Tsen,† Daniel T. Gryko,*‡§ and John Arnold*†

†Department of Chemistry, University of California, Berkeley, California 94720, United States
‡Institute for Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
§Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland

ABSTRACT: Bis-corroles have been prepared through a convergent synthesis using a copper-catalyzed azide–alkyne cycloaddition. Synthesis of the final homo- and heterobimetallic complexes has been achieved in three to four steps from commercially available materials in good overall yield. Meso-substituted corroles functionalized with a single azido or propargyl group were used as key starting materials.

INTRODUCTION

Interest in conjugated metallomacrocycles has rapidly increased in recent years, due to their close analogy to biological porphyrinoid systems and their potential application to real-world problems. Lanthanide phthalocyanines have exhibited single-molecule magnetism that may prove useful in molecular switches.1–5 Porphyrins have been used recently as high-quantum-yield sensitizers in solar cells,6 in nonlinear optics,7 and in molecular-scale electroluminescence,8 among many other applications. While less studied than their 20-membered-ring counterparts, metallocorrole complexes9 have demonstrated excellent activity as oxygen reduction catalysts with potential applications in fuel cells,10–14 as well as other catalytic activity for small-molecule/ion activation15,16 and detection of environmental toxins.16,17 Additionally, iron corroles have been shown to catalytically lower cholesterol levels and may be used to prevent heart disease,18 in addition to both gallium and phosphorus corroles being used as fluorescent reporters for tumor detection and treatment due to their high quantum yields.19,20

As potential applications of conjugated macrocycles and their metal complexes become increasingly prevalent, the question of how to practically incorporate these molecules into devices, drugs, and sensors is often what limits the next step in their development. Unattached small-molecule catalysts are impractical in a fuel cell or battery and need to be affixed to an electrode; interest in the use of corrole as an oxygen reduction catalyst was an early motivator for this research.11 Imaging agents and metal-based drugs are more effective if attached to a biomolecule that provides targeted delivery to the site of interest.21 Methods for covalently attaching corroles to other substrates have been reported in the literature,22 but none have seen widespread application.

Huisgen azide–alkyne cycloaddition,23–25 or “click” chemistry, has demonstrated utility both in surface attachment of small molecules26–31 and in targeted delivery in biological systems.30,32–35 In particular, both surfaces and biomolecules are easily functionalized with azido groups, and so couplings with alkynyl-functionalized small molecules are of great utility.36–40 The reaction takes place under mild conditions and is tolerant of a wide range of functional groups. This makes it ideal for attachment reactions of porphyrinoids, which are often fragile with regard to strongly oxidizing conditions. The fact that the “click” reaction, when optimized, occurs in quantitative yield is also an important attribute, considering both the possibility of unreacted starting materials compromising device functionality and the high value of porphyrinoids as a substrate. Indeed, several examples of azido- and alkynyl-functionalized porphyrins have been used for click reactions in the literature.41–44 Further examples also exist where porphyrinoids have been attached to a surface by way of a
“clicked” axial ligand. One example of a corrole functionalized with an azido group was reported in 2005 as a synthetic intermediate; this corrole has very recently been metalated with gallium and attached to a BODIPY dye by way of Huisgen azide–alkyne cycloaddition to demonstrate bidirectional fluorescence resonance energy transfer. In addition, one example of a corrole-functionalized with an alkynyl group has been reported while it was not used for “click” chemistry, this species was used for a cross-coupling reaction between corrole and coumarin units in order to study the optical properties of the dyad.

One of the major advantages of the Gryko “A2B” synthesis of corroles is that it allows more straightforward access to conjugated macrocycles with a single meso substituent with unique properties. In contrast, porphyrins with one unique meso substituent are often prepared by statistical synthesis, and existing examples of alkynyl-substituted porphyrins have multiple alkynyl groups creating the potential for a complex mixture of molecular environments when these are attached to a surface.

Preparation of bisporphyrinoids is similarly challenged by the use of statistical syntheses and is further plagued by compounding low yields. Although several groups have prepared interesting bis-corrole, bis-porphyrin, and porphyrin–corrole bimetallic complexes and demonstrated their activity as small-molecule activation catalysts, the reported yields are poor. In these unique cases the rigid backbone of these complexes is important to their reactivity and may not allow for the use of “click” chemistry. However, convergent synthesis where two corroles are assembled separately and then attached gives much better overall yields, as well as allowing for separate coordination of two different metals to produce a heterobimetallic complex.

Here we present the synthesis of two corrole ligands functionalized with propargyl and azido groups, respectively. These corroles are metalated with copper and iron and then attached to these small-molecule test substrates by Huisgen azide–alkyne cycloaddition as a proof of concept. Finally, homo-bimetallic (Cu2) and heterometallic (CuFe) bis-corrole molecules are prepared in good yields by the same “click” reaction.

EXPERIMENTAL SECTION

General Considerations.

Reactions were performed either using standard Schlenk and N2-atmosphere glovebox techniques or under ambient conditions on the laboratory bench, as noted. As much as possible, flasks for synthesis were covered with aluminum foil to reduce exposure to light throughout the procedures. When required, solvents were dried by passing through a column of activated alumina and degassed with nitrogen or using a Phoenix solvent drying system commercially available from JC Meyer Solvent Systems.

Purity of products was estimated by NMR spectroscopy, assuming that aliphatic impurities, when not identifiable, had a molecular weight of 100 and that a peak integrating to 1 in the 1H NMR spectrum (relative to a corrole aromatic peak of area 2) had one equivalent of impurity to one equivalent of corrole. In general this will overestimate the concentration of impurity, and so the results given are conservative and represent a minimum limit on purity and yield. Aromatic impurities were compared to impurities observed in the 13C NMR spectrum (where compounds were assumed to have a 1:1 mass ratio to the corrole product) and in this case were assumed to be redundant.

Instrumentation.

All NMR spectra were obtained at ambient temperature in deuterated solvents using Bruker AV-400 or AVQ-400 spectrometers at the University of California, Berkeley, or on 400, 500, or 600 MHz NMR instruments at the Organic Chemistry Institute, Polish Academy of Sciences. UV−vis spectra were determined with a Varian Cary 50 UV−vis spectrophotometer using a 1 mm quartz cell. Mass spectral data (ESI-MS, positive mode) were obtained at the University of California, Berkeley, Microanalytical Facility. Melting points were determined using sealed capillaries and are uncorrected.

5-Pentafluorophenylidipyromethane44 and 4-propargyloxylbenzaldehyde53 were prepared according to literature procedures. 5,15-Bis(pentafluorophenyl)-10-(4-methoxyphenyl)corrole ((C6F5)2(p-O(CH2CCH)Ph)corroleH3 (2) was prepared according to a modified literature procedure. 5-Pentafluorophenylidipyromethane (3.12 g, 10 mmol) and 4-propargyloxylbenzaldehyde (0.80 g, 5 mmol) were dissolved in methanol (500 mL). Concentrated hydrochloric acid (36%, 25 mL) was combined with 500 mL of distilled water, and the acid solution was added to the methanol solution while stirring, immediately producing a peach-colored suspension. The mixture was stirred for 1 h at room temperature and then extracted with chloroform. The organic extracts were washed twice with water, dried over sodium sulfate, filtered, and diluted with chloroform to 1.25 L. DDQ (3.4 g, 15 mmol) was added, and the reaction mixture was stirred overnight at room temperature. The solution was concentrated to 200 mL by rotary evaporation, then filtered through a silica gel column (1:1 CH2Cl2/hexanes). The combined eluents were concentrated to dryness. Column chromatography on silica gel (1:1 CH2Cl2/hexanes, Rf = 0.62 in 1:1 CH2Cl2/hexanes) provided the corrole with a minor impurity, which appears as a yellow spot on the TLC plate. This impurity is removed by recrystallization of the corrole from hexanes, which is repeated until the spot on the TLC plate disappears, yielding a purple solid (950 mg, 97% ext. purity, 23% yield).

General Considerations.

Reactions were performed either using standard Schlenk and N2-atmosphere glovebox techniques or under ambient conditions on the laboratory bench, as noted. As much as possible, flasks for synthesis were covered with aluminum foil to reduce exposure to light throughout the procedures. When required, solvents were dried by passing through a column of activated alumina and degassed with nitrogen or using a Phoenix solvent drying system commercially available from JC Meyer Solvent Systems.

Purity of products was estimated by NMR spectroscopy, assuming that aliphatic impurities, when not identifiable, had a molecular weight of 100 and that a peak integrating to 1 in the 1H NMR spectrum (relative to a corrole aromatic peak of area 2) had one equivalent of impurity to one equivalent of corrole. In general this will overestimate the concentration of impurity, and so the results given are conservative and represent a minimum limit on purity and yield. Aromatic impurities were compared to impurities observed in the 13C NMR spectrum (where compounds were assumed to have a 1:1 mass ratio to the corrole product) and in this case were assumed to be redundant.

Inorganic Chemistry

Inorganic Chemistry, 53, 7941−7950

dx.doi.org/10.1021/ic500714h | Inorg. Chem. 2014, 53, 7941−7950

7942
Sodium azide (13.4 mg, 0.207 mmol) and triethylbenzyl ammonium chloride (13.4 mg, 0.088 mmol) were added to a Schlenk line, and the reaction mixture was stirred for 30 min. Upon completion, the solvent was removed by rotary evaporation, and the resulting solid was purified by column chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). Upon purification, the product was isolated as a brown solid (77 mg, 88% est. purity, 77% yield). The crude product was dissolved in CH$_2$Cl$_2$ (12 mL) under ambient conditions. Copper(II) acetate (58 mg, 0.323 mmol) was suspended in methanol (6 mL), and the suspension was added to the corrole solution. An additional 6 mL of methanol was used in three portions to rinse residual copper(II) acetate into the reaction mixture. The reaction was allowed to stir for 30 min at room temperature and was monitored by thin-layer chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). Upon completion, the solvent was removed by rotary evaporation, and the resulting solid was purified by column chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). The product was isolated as a brown solid (17 mg, 85% est. purity, 79% yield). The crude product was dissolved in CH$_2$Cl$_2$ (12 mL) under ambient conditions. Copper(II) acetate (58 mg, 0.323 mmol) was suspended in methanol (6 mL), and the suspension was added to the corrole solution. An additional 6 mL of methanol was used in three portions to rinse residual copper(II) acetate into the reaction mixture. The reaction was allowed to stir for 30 min at room temperature and was monitored by thin-layer chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). Upon completion, the solvent was removed by rotary evaporation, and the resulting solid was purified by column chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). The product was isolated as a brown solid (77 mg, 88% est. purity, 77% yield). The crude product was dissolved in CH$_2$Cl$_2$ (12 mL) under ambient conditions. Copper(II) acetate (58 mg, 0.323 mmol) was suspended in methanol (6 mL), and the suspension was added to the corrole solution. An additional 6 mL of methanol was used in three portions to rinse residual copper(II) acetate into the reaction mixture. The reaction was allowed to stir for 30 min at room temperature and was monitored by thin-layer chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). Upon completion, the solvent was removed by rotary evaporation, and the resulting solid was purified by column chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). The product was isolated as a brown solid (77 mg, 88% est. purity, 77% yield). The crude product was dissolved in CH$_2$Cl$_2$ (12 mL) under ambient conditions. Copper(II) acetate (58 mg, 0.323 mmol) was suspended in methanol (6 mL), and the suspension was added to the corrole solution. An additional 6 mL of methanol was used in three portions to rinse residual copper(II) acetate into the reaction mixture. The reaction was allowed to stir for 30 min at room temperature and was monitored by thin-layer chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). Upon completion, the solvent was removed by rotary evaporation, and the resulting solid was purified by column chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). The product was isolated as a brown solid (77 mg, 88% est. purity, 77% yield). The crude product was dissolved in CH$_2$Cl$_2$ (12 mL) under ambient conditions. Copper(II) acetate (58 mg, 0.323 mmol) was suspended in methanol (6 mL), and the suspension was added to the corrole solution. An additional 6 mL of methanol was used in three portions to rinse residual copper(II) acetate into the reaction mixture. The reaction was allowed to stir for 30 min at room temperature and was monitored by thin-layer chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). Upon completion, the solvent was removed by rotary evaporation, and the resulting solid was purified by column chromatography (silica gel, 1:1 CH$_2$Cl$_2$/hexanes). The product was isolated as a brown solid (77 mg, 88% est. purity, 77% yield).
Iron(II) brodif (72 mg, 2.0 mmol) was placed in another flask under nitrogen, and the corrole solution transferred by cannula. The resulting mixture was reflushed for 6 h at 110 °C, and the reaction was monitored by thin-layer chromatography (silica gel, 1:1 CH₂Cl₂/hexanes). Dimethylformamide was removed under reduced pressure at 60 °C, and the resulting solid was triturated twice with diethyl ether, which was subsequently removed under reduced pressure to ensure complete removal of the dimethylformamide. The solid was extracted with diethyl ether and filtered by canulla, and the solvent was removed quickly under alternating nitrogen and vacuum to give a brown solid (82 mg, 93% est. purity, 87% yield). ¹H NMR (400 MHz, CD₂Cl₂, 23 °C): δ 8.68 (s), 7.73 (s), 6.18 (br s), 3.73 (s), 3.27 (s), 1.89 (s), 0.30 (s), −0.97 (br s), −34.35 (br s), −46.23 (br s), −104.68 (br s). ¹³F NMR (376 MHz, CD₂Cl₂, 23 °C): δ = −100.5 (br s, Cu-ortho-F), −149.5 (s, para-F), −155.7 (s, meta-F). UV−vis (nm): 376. ESI-MS (+): calcd 951.1077 for C₄₄H₂₄Cu₁F₁₀N₇O₁, obsd 951.1073. Mp: decomposition above 350 °C.

Iron(III) 5,15-Bis(pentafluorophenyl)-10-(4-methoxyethyl)-1,2,3-triazol-4-yl)phenyl)corrole Bi(s(diethyl ether). (C₅F₅)(O-CH₂(CH₃CN(CH₂OCH₂CH₂OH))Ph)corroleCu (12) was prepared as follows. Iron(III) 5,15-bis(pentafluorophenyl)-10-(4-propargyloxyphenyl)corrole (33 mg, 0.034 mmol) and benzyl azide (5 mg, 0.038 mmol) were placed in a dry 25 mL Schlenk flask. The flask was evacuated and filled with nitrogen three times, and dry CH₂Cl₂ (5 mL) was added by cannula. Copper(I) acetate (catalytic, approximately 1 mg) was added, and the resulting suspension was stirred for 15 min at room temperature.¹⁹F NMR (376 MHz, CD₂Cl₂, 23 °C): δ = −92.9 (br s, ortho-F), −150.2 (s, meta-F). UV−vis (nm): 410, 561. ESI-MS (+): calcd 947.1148 for C₃₈H₃₅F₁₀CuN₂O₂, obsd 947.1153. Mp: decomposition above 350 °C.

Copper(I) 5,15-Bis(pentafluorophenyl)-10-(4-methoxyethyl-1,2,3-triazol-4-yl)phenyl)corrole. (C₅F₅)(O-CH₂(CH₃CN(CH₂OCH₂CH₂OH))Ph)corroleCu (13) was prepared as follows. Copper(III) 5,15-bis(pentafluorophenyl)-10-(3-azidomethylphenyl)corrole (30 mg, 0.037 mmol) and propargyl alcohol (2.5 mg, 0.045 mmol) were placed in a dry 25 mL Schlenk flask. The flask was evacuated and filled with argon three times, and dry CH₂Cl₂ (5 mL) was added by cannula. Copper(I) acetate (catalytic, approximately 1 mg) was added, and the resulting suspension was stirred overnight at room temperature.¹⁹F NMR (500 MHz, CDCl₃, δ = −107.4 (br s, ortho-F), −150.2 (s, meta-F), −155.5 (s, para-F). UV−vis (nm): 700. LRI-MS: calcd 847.3326 for C₃₈H₃₅F₁₀CuN₂O₂, obsd 847.3326. Mp: decomposition above 350 °C.
Cyclic Voltammetry of Compounds 7, 9, 14, and 15. Cyclic voltammetric measurements were performed with a Gamry Reference 600 potentiostat, using either 0.1 M tetraethylammonium tetrafluoroborate in acetonitrile or 0.1 M tetra-n-butylammonium tetrafluorooborate in CH$_2$Cl$_2$. A three-electrode cell was used, with a glassy carbon working electrode (3 mm diameter), a platinum mesh counter electrode, and a Ag/Ag’ reference electrode. The reference electrode consisted of a silver wire in a solution of 0.01M AgNO$_3$ and 0.1 M TEABF$_4$ in acetonitrile, separated from the bulk solution by a Vycor frit. Electrolyte solutions were deoxygenated with nitrogen for at least 10 min before any compounds were added and were kept under a blanket of nitrogen during analysis. Between measurements, the working electrode was polished with 0.05 μm alumina and rinsed with distilled water and acetonitrile.

All potentials are referenced to Ag/Ag’ (0.01 M Ag’). Potentials reproduced from other publications have been converted from SCE to Ag/Ag’ by subtracting 298 mV.61 All scans shown were taken at 100 mV/s, except for 15 (the Cu–Fe complex), which was not sufficiently soluble in acetonitrile (although solubility was better in acetonitrile than in CH$_2$Cl$_2$) and had to be measured at 500 mV/s to observe well-resolved peaks. Currents are reported as current densities, calculated using an electrode area of 0.071 cm2. Arrows on the voltammograms (in the SI) indicate the direction of the first potential sweep.

RESULTS AND DISCUSSION

Previous research has emphasized the importance of electron-withdrawing meso-substituents on corrole ligands.62 These make the first oxidation potential more positive63 and enhance the stability of the corrole toward light and oxygen.64 For this reason, we chose 5-(pentafluorophenyl)dipyrromethane as a key substrate. Combination of two equivalents of 5-(pentafluorophenyl)dipyrromethane and one equivalent of 4-propargyloxybenzaldehyde in a mixture of methanol and acidic water at room temperature was followed by extraction with chloroform and the addition of DDQ.39 After stirring overnight at room temperature, column chromatography and recrystallization gave 5,15-bis(pentafluorophenyl)-10-(4-propargyloxyphenyl)corrole ($C_6F_5_2$) as a purple crystalline solid in 23% yield (Scheme 1a).
Following the same general procedure, \(5,15\)-bis(pentafluorophenyl)-10-(3-bromomethylphenyl)corrole \(((\text{C}_6\text{F}_5)_2\text{m-CH}_2\text{Br})\text{Ph})\text{corroleH}_3; 2\) was prepared in 18% yield. The bromomethyl group was then converted to an azidomethyl group by reaction with sodium azide in the presence of triethylbenzyl ammonium chloride as a phase transfer catalyst. This reaction was stirred overnight at room temperature, and after aqueous extraction and column chromatography, \(5,15\)-bis(pentafluorophenyl)-10-(3-azidomethylphenyl)corrole \(((\text{C}_6\text{F}_5)_2\text{m-CH}_2\text{N}_3)\text{Ph})\text{corroleH}_3; 3\) was isolated as a purple crystalline solid in 69% yield (Scheme 1b). Free-base corroles 1, 2, and 3 have been characterized by \(^1\text{H}\), \(^{13}\text{C}\), and \(^{19}\text{F}\) NMR spectroscopies, UV−visible spectroscopy, and ESI mass spectrometry (see Experimental Section). To our knowledge, these species constitute only the second example in each case of alkyny-functionalized \(^7\) (propargyl) and azido-functionalized \(^6\) corrole ligands.

Both 1 and 3, in addition to the previously reported \(5,15\)-bis(pentafluorophenyl)-10-(4-methoxyphenyl)corrole \(((\text{C}_6\text{F}_5)_2\text{m-CH}_2\text{O}_2\text{Me})\text{Ph})\text{corroleH}_3; 4\), were reacted with copper(II) acetate to form 5 (74% yield), 6 (77% yield), and 7 (77% yield), respectively (Scheme 1).\(^5\) All three compounds have been characterized by \(^1\text{H}\) and \(^{19}\text{F}\) NMR spectroscopies (5 and 6 were also characterized by \(^{13}\text{C}\) NMR spectroscopy; see the SI), UV−visible spectroscopy, and ESI mass spectrometry (see the Experimental Section). 7 was prepared primarily as a reference compound for electrochemical characterization (see below).

Compounds 1 and 4 were reacted with iron(II) bromide in refluxing dimethylformamide under Schlenk conditions to produce 8 (44% yield) and 9 (87% yield), respectively (Scheme 1a).\(^5\) Unlike for the analogous tris(trifluorophenyl)-corrole complexes, these compounds were sensitive to oxidation to a bis-iron(IV)-bridged \(\mu\)-oxo species and required either anhydrous, air-free workup (9) or column chromatography followed by reduction with hydrazine in diethyl ether (8) to cleanly produce the paramagnetic iron(III) corrole species. Both compounds have been characterized by \(^1\text{H}\) and \(^{19}\text{F}\) NMR spectroscopies (see the SI), where their paramagnetically shifted peaks are diagnostic and match closely with those previously reported by Gross and co-workers for the paramagnetic high-spin iron(III) tris(trifluorophenyl)corrole bis(diethyl ether).\(^5\) Specifically, the broad signal at \(-95.3\) ppm in the \(^{19}\text{F}\) NMR spectrum of 8 (\(-100.5\) ppm in 9) can be assigned to the ortho-fluorine atoms, while that at \(-149.7\) ppm (\(-149.5\) ppm in 9) can be assigned to the para-fluorine and that at \(-155.2\) ppm (\(-155.7\) ppm in 9) to the meta-fluorine atoms. Differentiation of these compounds from the bis-iron(IV)-bridged \(\mu\)-oxo species is straightforward because the latter displays five inequivalent diamagnetically shifted signals in the \(^{19}\text{F}\) NMR spectrum. There are slight differences between the chemical shifts of these compounds in both the \(^1\text{H}\) and \(^{19}\text{F}\) NMR spectra; these differences correspond to a very slight difference in UV−visible absorption maxima between 8 (381 nm) and 9 (376 nm). As these compounds differ only by a remote substituent (propargyl vs methoxy), the reasons for these differences are unclear; however they may relate to the slightly greater electronic-donating nature of the methoxy group and subsequent inductive electron donation by the 10-phenyl meso substituent to the corrole ring. These compounds were also characterized by ESI mass spectrometry (see the Experimental Section).

To test the reactivity of these species toward “click” chemistry and to ascertain that the presence of coordinated metals did not inhibit this reactivity, 5 was reacted with 2-(2-azidoethoxy)ethan-1-ol and 5 and 8 were both reacted with benzyl azide to produce 10 (49% yield), 11 (72% yield), and 12 (52% yield), respectively (Scheme 2).

Scheme 2. Test Reactions to Confirm Reactivity of Propargyl-Functionalized Corroles 5 and 8 toward the “Click” Reaction with Small Substrates

Similar to its precursor, 8, 12 was reacted with hydrazine in diethyl ether to cleanly isolate the iron(III) corrole species. To a similar end, 6 was reacted with propargyl alcohol to produce 13 (41% yield) (Scheme 3). In all cases copper(II) acetate, recently published as an excellent catalyst for azide−alkyne cycloaddition,\(^6\) was used as a heterogeneous catalyst for this reaction, and the compounds were isolated by column chromatography. All three compounds were characterized by \(^1\text{H}\) and \(^{19}\text{F}\) NMR spectroscopies (10 by \(^{13}\text{C}\) NMR spectroscopy; see the SI), UV−visible spectroscopy, and ESI mass spectrometry (see the Experimental Section). The paramagnetic NMR spectra of 12 are consistent with those observed for 8 and with those reported in the literature.\(^5\) It should be noted that initial attempts were also made to react the free-base corrole 1 with benzyl azide. These resulted in very low yields of 5 and 11 among a mixture of species.
suggesting metalation of the free-base corrole by copper(I) acetate. However, there was no indication of substitution of iron with copper in reactions performed on 8, indicating that metal exchange was not an issue in this case and that the presence of redox-active iron(III) and copper(III) species does not interfere with “click” reactivity.

Of greater interest than the ability to attach to small organic substrates was the question of whether azido- and alkynyl-derivatized corroles could be coupled with each other to produce bis-corrole bimetallic species. To this end, 5 and 6 were reacted in the presence of copper(I) acetate to produce bis-copper complex 14 in 84% yield (Scheme 4). The identity of this compound as a single molecule (as opposed to a mixture of the two starting materials) was confirmed by ESI-MS (see the Experimental Section). The 1H and 19F NMR spectra suggest that there is no significant interaction between the two corrole rings; unlike in several reported examples of “sandwich” species where the corroles are cofacial with metals and bridging ligands between them,\(^\text{66–68}\) no unusual shifts of the β-pyrollic hydrogen atoms or the −C₆F₅ fluorine atoms are observed. If the two rings interacted, then nonequivalency of the ortho and meta fluorine atoms would be expected, and those on the inside of the cofacial “sandwich” would be shifted upfield due to shielding by added effects of two anisotropic corrole rings. The 19F NMR spectrum is notable in that it is clearly a superposition of two sets of −C₆F₅ peaks in nearly identical chemical environments (Figure 1), consistent with two bis-perfluorinated copper(III) corroles that do not have any electronic communication. Figure 1 also shows enlarged regions (inset) for the ortho, para, and meta fluorine peaks for compounds 5, 6, and 14. While the spectra cannot be overlaid directly due to differences in solvent and magnetic field strength, comparison of the complex peaks of 14 with those of its precursors shows that the spectrum is consistent with two corrole rings in diamagnetic environments. Additionally, the alkynyl proton observed in the 1H NMR spectrum of 5 is not present in 14, but an additional singlet that integrates to 1H is observed at 7.75 ppm in the aromatic region (which otherwise looks very much like a superposition of the spectra of 5 and 6), consistent with formation of the triazole.

By a similar procedure, 8 and 6 were reacted in the presence of copper(I) acetate to generate the heterobimetallic copper-
(III) iron(III) bis-corrole complex 15 (54% yield). Analogous to the iron(III) complex 12, hydrazine was added to convert the product cleanly to an iron(III) species; in this case acetonitrile was used as the coordinating solvent due to limited solubility of the larger molecule in diethyl ether.

1H and 19F NMR spectroscopies again suggest that there is minimal interaction between the two metal centers, although broad peaks from the paramagnetic iron(III) corrole do overlap the peaks of the copper corrole in the 1H NMR spectrum, precluding accurate integration of the sharp peaks. The paramagnetically shifted peaks of the iron corrole in both the 1H and 19F NMR spectra of 15 are again consistent with those previously reported for an iron(III) corrole species.

In the 19F NMR five peaks are observed (δ –117.7 (ortho-F-Fe(corrole)), –140.5 (ortho-F-Cu(corrole)), –158.0 (possibly two peaks, para-F’s), –163.7 (meta-F), –165.2 (meta-F)); it is likely that two peaks are superimposed at –158 ppm due to slight broadening of this peak; however integration is inaccurate in the presence of a paramagnetic metal center. The meta-fluorine peaks cannot be distinguished without more advanced NMR spectroscopic studies.

Both 14 and 15 were characterized by cyclic voltammetry, as were 7 and 9 for comparison. 14 shows a single reversible peak at –0.21 V vs Ag/Ag$^+$ in methylene chloride, corresponding to the CuIII/CuII peaks of both copper centers (Figure S5, Table 1). This peak is at essentially the same potential with double the current observed for 7 (–0.23 V vs Ag/Ag$^+$) and occurs at a potential 0.12 V more negative than the analogous peak in previously reported copper(III) tris(perfluorophenyl) corrole (Cu(tpfc)) and 0.33 V more positive than the previously...
reported copper(III) tris(p-methoxyphenyl) corrole. These numbers are consistent with the corresponding electron-withdrawing and electron-donating natures of the corrole ligands in 7, Cu(tpfc), and Cu(p-OMePh)₃corrole.³⁶ The voltammogram of 14 also shows a quasireversible peak at 0.74 V vs Ag/Ag⁺ with an oxidative shoulder at 0.64 V (0.1 V/s) that merges with the main peak at higher scan rates. These peaks correspond to oxidation of the ligand and are again very similar to the corresponding ligand oxidation observed for 7 but with roughly double the current. The presence of a single peak for the CuIII/CuII couple and that at 0.04 V corresponds to FeIII/FeIV couple and that at 0.04 V corresponds to oxidation of the ligand and are again very similar to the fact that the metal oxidations and reductions are consistent with the presence of both copper and iron. The peak at −0.19 V vs Ag/Ag⁺ corresponds to the CuIII/CuII couple and that at 0.04 V corresponds to FeIII/FeIV.⁵⁸ these are essentially the same peaks observed for the two corresponding mononuclear species, 7 and 9 (Table 1). As is the case with the CuIII/CuII peak, the FeIII/FeIV couple occurs at a potential 0.40 V more negative than the analogous FeIII/FeIV peak in Fe(tpfc).⁵⁸ It should be noted that the voltammograms of 14 and 15 were recorded in different solvents due to solubility limitations. Similarly to 14, the voltammogram of 15 shows oxidative peaks corresponding to the oxidation of the ligand. Also analogous to 14, there is no indication of interaction between the two metal centers, based on the fact that the metal oxidations and reductions are observed at essentially the same potentials as seen in the mononuclear analogues.

CONCLUSION

In summary, we have demonstrated that bis-corroles possessing a flexible linker can be efficiently synthesized via Huisgen azide–alkyne cycloaddition chemistry. Our convergent strategy makes it possible to construct two building blocks independently and then to combine them in the final step. This methodology allows preparation of stable homo- and heterobimetallic complexes. Further studies are underway to demonstrate the utility of this reaction for attachment of corroles to larger substrates and surfaces.

ASSOCIATED CONTENT

Cyclic voltammograms of 7, 9, 14, and 15 and NMR spectra of 1–3 and 5–15. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*Tel: 001 510 643 5181. E-mail: arnold@berkeley.edu.

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge Beata Koszarna, Mariusz Tasior, and Jan Lewtak at Polish Academy of Sciences for helpful discussions; Jerzy Chlístunoff at LANL for helpful discussions; and the spectroscopy staff at the Polish Academy of Sciences and UC Berkeley QB3 for routine analysis. H.L.B. acknowledges the International Fulbright Science & Technology fellowship and the UC Fees program for support. L.K.R. acknowledges the NSF IGERT program (DGE-1144885). B.J.M. acknowledges the Haas Scholars program at the University of California, Berkeley. D.T.G. acknowledges the EuroSolarFuels grant.

REFERENCES

(21) Zhang, X.; Zhang, Y. Molecules 2013, 18, 7145–7159.
(23) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013, 340, 457–460.