Title
Volatile Decay Products in Breath During Peritonitis Shock are Attenuated by Enteral Blockade of Pancreatic Digestive Proteases.

Permalink
https://escholarship.org/uc/item/9t91j118

Authors
DeLano, FA
Chow, J
Schmid-Schönbein, GW

Publication Date
2017-05-11

DOI
10.1097/shk.0000000000000888

Peer reviewed
There is a need to develop markers for early detection of organ failure in shock that can be non-invasively measured at point of care. We explore here the use of volatile organic compounds (VOCs) in expired air in a rat peritonitis shock model. Expired breath samples were collected into Tedlar gas bags and analyzed by standardized gas chromatography. The gas chromatograms were digitally analyzed for presence of peak amounts over a range of Kovach indices. Following the induction of peritonitis, selected volatile compounds were detected within about one hour, which remained at elevated amounts over a 6 hours observation period. These VOCs were not present in control animals without peritonitis. Comparisons with know VOCs indicate that they include 1,4-diaminobutane and trimethylamine N-oxide. When pancreatic digestive proteases were blocked with tranexamic acid in the intestine and peritoneum, a procedure that serves to reduce organ failure in shock, the amounts of VOCs in the breath decreased spontaneously to control values without peritonitis. These results indicate that peritonitis shock is accompanied by development of volatile organic compounds that may be generated by digestive enzymes in the small intestine. VOCs may serve as indicators for detection of early forms of autodigestion by digestive proteases.
Volatile Decay Products in Breath during Peritonitis Shock are Attenuated by Enteral Blockade of Pancreatic Digestive Proteases

Frank A. DeLano, Jason Chow, Geert W. Schmid-Schönbein

Microcirculation Laboratory
Department of Bioengineering,
Institute for Engineering in Medicine
University of California San Diego
La Jolla, CA 92093-0412

Running Title: Volatile Organic Breath Compounds in Shock

Keywords: Peritonitis shock, pancreatic digestive enzymes, breath, volatile organic compounds

Acknowledgement: Supported by an unrestricted gift from Leading Biosciences Inc. and by NIH Grants HL 67825 and GM 85072.

Correspondence:
Dr. Geert W. Schmid-Schönbein
Department of Bioengineering,
Institute for Engineering in Medicine
University of California San Diego
9500 Gilman Drive
La Jolla, CA 92093-0412

Competing interests: F.A.D., and G.W.S.S. own equity in InflammaGen, a company by Leading Bioscience Inc., which develops therapy for shock patients.
Abstract

There is a need to develop markers for early detection of organ failure in shock that can be non-invasively measured at point of care. We explore here the use of volatile organic compounds (VOCs) in expired air in a rat peritonitis shock model. Expired breath samples were collected into Tedlar gas bags and analyzed by standardized gas chromatography. The gas chromatograms were digitally analyzed for presence of peak amounts over a range of Kovach indices. Following the induction of peritonitis, selected volatile compounds were detected within about one hour, which remained at elevated amounts over a 6 hours observation period. These VOCs were not present in control animals without peritonitis. Comparisons with know VOCs indicate that they include 1,4-diaminobutane and trimethylamine N-oxide. When pancreatic digestive proteases were blocked with tranexamic acid in the intestine and peritoneum, a procedure that serves to reduce organ failure in shock, the amounts of VOCs in the breath decreased spontaneously to control values without peritonitis. These results indicate that peritonitis shock is accompanied by development of volatile organic compounds that may be generated by digestive enzymes in the small intestine. VOCs may serve as indicators for detection of early forms of autodigestion by digestive proteases.
Introduction

One of the major requirements for effective intervention in shock is early detection of signs for progression towards organ failure. There are a large number of blood indicators for shock which range from monitoring of small molecules, like blood oxygen values, to detection of elevated blood plasma values of lactate or inflammatory markers such as complements and cytokines (1-3).

Selected combinations of lower molecular weight (up to 1.5kD) metabolomic markers (e.g. organic acids, lipids, amino acids, carbohydrates, peptides, vitamins, steroids, xenobiotics) in exhaled breath condensates were proposed to characterize patients with shock and respiratory failure (4). But there is a need to explore non-invasive early indicators for end organ damage that serve to minimize delay in diagnosis and facilitate interventions to attenuate progression into multi-organ failure.

Volatile organic compounds (VOCs) have been identified as possible approaches for non-invasive detection of several diseases, e.g. cancers, acute lung injury, tuberculosis, liver disease, myocardial infarction (5-11). VOCs include acetone, acetaldehyde, alkanes, amines, benzenes, pentane, sulfur compounds, and many others (12). After endotoxic administration in the rat, compounds like propanol, butanal, acetophenone, butandiol, hexanone, dimethylether, pentafluoropropionamide, xylene, propanol, toluene and others have been proposed to serve a multivariate diagnostic analysis of shock versus control animals (13). Alcohols and ketones (e.g. propanol, pentanone, acetone, hexanone) were reported to decrease over a six hour period in cecal ligation and endotoxin shock but not in hemorrhagic shock (14). In a study with Wiggers hemorrhagic shock 16 different VOCs changed in shock compared to controls, five of which had higher intensities, nine had lower intensities during hypotension and 9 hours thereafter, and two increased only during the hypotensive period (15). It is largely uncertain what mechanisms are
involved in the formation of VOC and whether their detection may serve as a diagnostic tool to evaluate the effectiveness of therapy. This is the objective of the current report.

Our increasing evidence suggests that pancreatic digestive enzymes in the small intestine and digestive fragments they produce may play a central role in the development of organ failure by escape from the lumen of the intestine after breakdown of the mucosal barrier (16). As digestive enzymes enter into the wall of the intestine, they break down the mucosal lining (17) and start an autodigestion process, which leads to multi-organ failure and death if uninterrupted (18). During this process not only the food content of the intestine, as is the case during normal digestion, but also autologous tissue is degraded to the point that morphological features associated with the intestinal mucosa are destroyed. The process starts at the tip of villi in the small intestine already within minutes of an ischemic insult (19) and can lead to complete destruction of the villi (20-23).

Introduction of ischemia causes formation of VOCs detected by gas chromatography (24). But their source in the tissue remains uncertain. We hypothesize that in experimental peritonitis shock distinct VOCs are generated during proteolytic degradation of the small intestine and are detectable in the breath. Accordingly, we present measurements of VOCs before and after peritonitis shock without and with blockade of the pancreatic proteases in the lumen of the intestine.
The animal protocol was reviewed and approved by the UC San Diego Animal Subjects Committee. Young mature Wistar rats (age 15 to 20 weeks, 350-450 grams body weight, Harlan Sprague Dawley) were maintained on a regular diet (Harlan Teklad Rodent diet (W) 8604, 0.29% sodium by weight) without restriction and water ad libitum. After general anesthesia (pentobarbital sodium, 50 mg/kg, Abbott Laboratories, i.m.), the body temperature was maintained at 37ºC by keeping the animals on a water-heated support and by use of a heat blanket. At the end of the six-hour observation period the animals were euthanized (120 mg/kg, Beuthanasia-D Special, Merk Animal Health).

Peritonitis Shock

In this shock model, cecal material (900 mg/kg derived from a mixture of multiple donor rats, diluted by addition of 1 ml of 5% glucose saline solution to 1 gm cecal material) was injected into the peritoneal cavity and gently spread by mild skin compression over the abdomen. Control animals without peritonitis were administered the glucose saline solution without cecal material.

Digestive Enzyme Blockage

The digestive enzymes were blocked at 60 min after cecal material administration as described (16). Briefly, to block digestive enzymes in the lumen of the intestine, a mid-line incision (2.5 cm) was made to temporarily expose the small intestine. Tranexamic acid (127 mM, Pfizer Inc.) dissolved in GoLYTELY (60 g/L PEG-3350 and electrolytes for oral solution; Braintree Laboratories,
Inc) was injected with a needle (BD Sub-Q 26G 5/8, Becton Dickinson & Co) into the lumen of the intestine from the duodenum to the cecum. Untreated shock controls received GoLYTELY without the protease inhibitor. In a 350 gm rat a total fluid volume of 15 ml (at 39°C) was injected into the lumen of the small intestine spaced over 8 injections in intervals of about 5 cm and 2 ml was injected into the cecum. The intestine was returned into the peritoneal cavity and the incision closed by sutures.

In addition to the enteral protease inhibition, a mixture was also administered as lavage into the peritoneum composed of tranexamic acid (2 ml; 127 mM dissolved in saline), an antibiotic (ciprofloxacin, 10 mg/ml, Hospira, Inc), and albumin (40 mg/ml, Sigma-Aldrich Co) at one hour after placement of cecal material. The mixture serves to inhibit not only digestive enzymes, but also bacteria and lipid cytotoxic mediators (e.g. unbound free fatty acids) that were administered by the cecal material into the peritoneum. The untreated peritonitis shock group received the same volume of saline into the peritoneum and the same volume of GoLYTELY into the lumen of the intestine but without additives. To determine the role of the enteral treatment in VOC generation, we also studied a group of shock rats (n = 3) with peritoneal treatment only (using the same mixture) but without enteral treatment.

Breath Analysis

To collect exhaled air, a tracheotomy was carried out for placement of a two-way non-rebreathing valve. Exhaled breath samples were collected in Tedlar gas sample bags (1 L, Jensen Inert, Coral Springs, Florida) placed at the end of the tracheostomy tube. A two-way non-rebreathing valve (series 2300 T-shape; Hans Rudolph, Inc., Shawnee, Kansas) was used for collection of exhaled air into gas sampling bags. Control breath samples were collected before laparotomy to block
digestive enzymes. Room air samples were collected as controls for inspired air. Samples were collected in intervals of 30 min over the first hour and then hourly for 6 hours.

The gas sample bags were kept at room temperature and analyzed within a period of two hours after collection. Repeat measurements of the same air sample over a period of seven days showed that there was no significant loss of VOCs in the bags, for example due to absorption to the Tedlar bags.

The presence of VOCs was detected by use of gas chromatography (Z-Nose Ultra-Fast GC, Model 4200, MicroSense 5.44 GC analysis software, Electronic Sensor Technology, Newbury Park, CA). The settings on the gas chromatography were standardized (sensor temperature 30°C, column temperature 40°C, valve temperature 140°C, inlet temperature 200°C, trap temperature 250°C, flow 3.0 ccm--helium carrier gas; sample time = 30 seconds; temperature ramp = 200°C at 5°C/sec). Before measurements, the gas chromatography chamber was cleaned by heat (205 °C) running helium through the system in a continuous mode until a background was reached with little activity. For calibration of the Kovach index (KI), an alkane calibration (n-alkane vapors C6-C14; Electronic Sensor Technology) solution was tested five consecutive times. The chromatography profile was digitally scanned and peak amounts were determined with peak-detection software provided with the Z-nose. The values are expressed in form of “amount” (i.e. digital detector GC output).

A list of 25 VOCs was tested with the same GC settings to determine their associated KI values (acetone; amine; n-butyl acetate; 2-butanone; t-butanol; butyraldehyde; benzaldehyde; cadaverine; carbon disulfide; chlorobenzene; dimethyl sulfide; 1,4-diaminobutane; 1,5-diaminopentane; 1,2-dichloroethane; ethanol; indole; limonene; 6-methyl-5-hepten-2-one; 4-methylphenol; pentanoic acid; 1-propanol; putrescine; methylamine N-oxide, TMAO; o-xylene). The list was derived from
literature values for gastrointestinal, respiratory and cancer patients and associated in part with tissue decay (6, 11, 25-32). Each compound was dissolved in distilled water and the supernatant tested in the GC. The KI values for these compounds were compared with the KI values determined in the breath samples of the rats.

Statistics

All measurements are summarized as mean ± standard deviation. Repeated measures ANOVA followed by Bonferroni post-hoc test was used to compare sham controls with untreated and treated shock groups. Comparison between treated and untreated groups was carried out by Student’s t test. P<0.05 was considered significant.

Results

The control breath samples had a gas chromatography profile that was similar among the control animals with relatively small variation among rats (typical variance about 10%). During peritonitis shock breath samples exhibited shifting peak amounts at distinct KI values, some of the peak amounts increased and some also decreased (Figure 1).
Analysis of changes in peak amounts over a range of KI values between about 600 and 2000 showed that the peak amounts at KI 720, 900, and 1550 in the breath (Figure 2) exhibited significant differences between sham control and shock. While in sham controls the peak amounts did not rise significantly over the 6-hour period of the current experiments, in peritonitis shock the peak amounts at KI 720, KI 900 and KI 1550 monotonically and significantly rose. The rise occurred already within the first hour of the peritonitis and there was no trend for a reduction of peak amounts over the course of the experiment.

In contrast, after the combined enteral/peritoneal treatment and blockade of the digestive enzymes with tranexamic acid at 1 hour, the peak amounts started to decrease and after 6 hours fell to values that were not different compared to non-shock controls (Figure 2). The decreases in peak amounts were only observed after treatment. The enteral treatment is essential for the reduction of the VOC amounts. Without enteral administration and only peritoneal treatment in shock animals, there was no reduction of the peak amounts and their values without significantly difference compared to the untreated peritonitis group (Figure 2, legend).

Peak amounts at KI values, other than at 720, 900 and 1550 exhibited no significant changes in the current exhaled gas analysis, although several peak amounts reached close to significant values.

Among the set of VOCs we tested (see Methods), 1,4-diaminobutane (Lot# STBC1987V, SIGMA-Aldrich Co.) had a KI at 720±5 and trimethylamine N-oxide (TMAO, 317594, SIGMA-Aldrich Co.) a KI of 900±5. We could not find in this list a compound that had a peak amount at KI 1550. All
other VOC peak amounts fell at least by a value of ±50 outside the KI values observed in the
breath samples. Both 1,4-diaminobutane and TMAO have a strong foul odor.

Discussion

The current results indicate that in experimental peritonitis the breath contains within less than an
hour elevated levels of VOCs over several hours that can be inhibited by enteral protease inhibition
in the small intestine, but not without it. These measurements are in line with qualitative
observations during a previous study with an identical peritonitis shock model (16) as well as other
forms of shock (including hemorrhagic and endotoxic shock) in which we noticed foul volatile odor
originating from the small intestine. Without exception (18 out of 18 rats examined) the odor was
noticed in those animals that succumb to the insult, but less so in surviving animals. In addition to
mortality the presence of the odor was accompanied by escape of digestive proteases into the wall
of the intestine, lesion formations in the small intestine and the lung. All animals in these studies
were maintained with food and water at libitum at the time before shock. Therefore the small
intestines were in part filled with food items so that the pancreatic digestive enzymes in the
partially digested food and/or the wall of the intestine could serve as a source of the VOCs (16).

A combination of enteral and peritoneal placement of tranexamic acid, a serine protease inhibitor,
e.g. for pancreatic trypsin (17), served to reduce the VOC amounts. The protection provided by
inhibition of the digestive proteases in the intestine and peritoneum includes beside a reduction of
the mortality also a significant reduction of the lesions in the small intestine, heart and lung,
including a reduction of the protease activity in the wall of the small intestine and in plasma.
Inhibition of the pancreatic digestive enzymes in hemorrhagic shock also reduces the development
of insulin resistance by proteolytic cleavage of the ectodomain of the insulin receptor (33). This
evidence suggests that the powerful digestive enzymes in the small intestine may be a major producer for the VOCs that eventually appears in expired air. The VOCs appear to be carried in the plasma and diffuse into the airways.

The VOCs found in this study could be detected without the use of a chemical concentrator during sample collection. They are in sufficient concentrations to be detectable by unaided human smell sensor. Among specific VOCs with equal KI values as seen in the breath samples were 1,4-diaminobutane, TMAO and a volatile compound who’s identity remains to be identified. TMAO is a foul smelling compound with below body temperature melting points. It is a metabolite from dietary phosphatidylcholine (e.g. lecithin) and can be generated by certain intestinal bacteria (e.g. by generation of trimethylamine which can be transformed into TMAO) (34). Elevated levels of TMAO have been associated with cardiovascular risk (25, 35).

The mechanism by which the TXA protease inhibition blocks the formation of TMAO, as seen in the current experiments, remains to be identified. TXA was administered enterally and by lavage into the peritoneal cavity around the intestine. The fact that it serves to acutely reverse VOCs formation indicates that their formation is ongoing and protease dependent. The fact that the peritoneal without enteral blockade is inadequate to block the formation of the VOCs (Figure 2, legend) suggests that the digestive enzymes in the lumen of the small intestine are centrally involved. A source for the odor may be food material in the lumen of the intestine, as seen in fecal material (12), but could also include intestine itself, since digestive enzymes enter the wall of the intestine in shock. TXA serves to preserve the mucosal barrier. If a source of the foul smelling VOCs is in the lumen of the intestine, then the preservation of the barrier my reduce entry of the VOC into the circulation and into the breath. If the source of the VOCs is in the wall of the intestine, the mode of action by TXA is to prevent proteolytic degradation of intestine and also other tissues.
into which digestive protease leak during peritonitis shock.

TXA is recognized and marketed as an anti-fibrinolytic agent, able to block formation of plasmin when administered i.v.. But its actions as protease inhibitor appear to be broader. In the current application it was used to block serine proteases (e.g. trypsin) in the lumen of the small intestine without i.v. infusion. Enteral blockade of digestive enzymes serves to attenuate a variety of tissue injuries, organ dysfunctions and failures in multiple models of shock (16, 33), and thus the current observation for attenuation of VOCs is in line with the evidence for other forms of protection from digestive enzymes.

We consistently smelled VOCs from the intestine in non-surviving animals that were subject to hemorrhagic shock, a model without the use of cecal material with bacteria or an antibiotic agent in the peritoneum. While measurements of VOCs with and without antibiotic treatment (as compared to enteral protease inhibition) in shock remain to be carried out, this evidence suggests that VOCs can be formed without a major bacterial load.

Key questions to be investigated are whether VOCs in shock patients detected by an electronic breath sensor are similar to those seen in experimental models and if present whether they serve to predict impending organ failure before it reaches an irreversible stage associated with actual organ failure. The current evidence indicates that VOC generation is an early event in a peritonitis induced shock model but the amounts detected in the breath may depend on the extent of intestinal damage. In the current model the major length of the small intestine wall tissue is subject to infiltration by digestive enzymes (16) and a potential source for VOCs. If in other situations shorter segments of the small intestine become ischemic and are infiltrated by digestive enzymes the magnitude of the VOCs detected in the breath may be lower. This situation in ICU patients is
largely unknown and will require clinical measurements from the time of earliest access to breath samples.
References

Figure Legends

Figure 1. An example of GC profile for control without peritonitis (Control group), untreated peritonitis (Shock group) and peritonitis with treatment by inhibition of the digestive proteases with TXA (Shock Treated, see Methods). Note elevation of peak amounts, e.g. at KI 720, 900, and 1550.

Figure 2: The amounts of VOCs at KI (a) 720, (b) 900, and (c) 1550 measured over a period 6 hours from rat breath samples after exposure to peritonitis shock without (Shock group) and with enteral protease inhibition with TXA (Treated group) at 1 hour after initiation of the peritonitis. Control represents a sham group without peritonitis. n = 6 to 8 rats in each group. Amounts of VOCs in a separate group (n = 3 rats) with peritonitis shock but with treatment in the peritoneum only (with same mixture, see Methods) and without enteral treatment gave values that were not significantly different compared to the untreated Shock group. At 6 hours the amounts of VOCs in this group with peritoneal treatment only at KI 720, 900, and 1550 were 315 ± 43, 117 ± 34, 483 ± 61, respectively. *p<0.05 Control vs Shock group; †p<0.05 Shock vs Treated group; ‡p<0.05 Control vs Treated group.
Volatile Decay Products in Breath during Peritonitis Shock are Attenuated by Enteral Blockade of Pancreatic Digestive Proteases

Frank A. DeLano, Jason Chow, Geert W. Schmid-Schönbein

Microcirculation Laboratory
Department of Bioengineering,
Institute for Engineering in Medicine
University of California San Diego
La Jolla, CA 92093-0412

Running Title: Volatile Organic Breath Compounds in Shock

Keywords: Peritonitis shock, pancreatic digestive enzymes, breath, volatile organic compounds

Acknowledgement: Supported by an unrestricted gift from Leading Biosciences Inc. and by NIH Grants HL 67825 and GM 85072.

Correspondence:
Dr. Geert W. Schmid-Schönbein
Department of Bioengineering,
Institute for Engineering in Medicine
University of California San Diego
9500 Gilman Drive
La Jolla, CA 92093-0412

Competing interests: F.A.D., and G.W.S.S. own equity in InflammaGen, a company by Leading Bioscience Inc., which develops therapy for shock patients.
Abstract

There is a need to develop markers for early detection of organ failure in shock that can be non-invasively measured at point of care. We explore here the use of volatile organic compounds (VOCs) in expired air in a rat peritonitis shock model. Expired breath samples were collected into Tedlar gas bags and analyzed by standardized gas chromatography. The gas chromatograms were digitally analyzed for presence of peak amounts over a range of Kovach indices. Following the induction of peritonitis, selected volatile compounds were detected within about one hour, which remained at elevated amounts over a 6 hours observation period. These VOCs were not present in control animals without peritonitis. Comparisons with known VOCs indicate that they include 1,4-diaminobutane and trimethylamine N-oxide. When pancreatic digestive proteases were blocked with tranexamic acid in the intestine and peritoneum, a procedure that serves to reduce organ failure in shock, the amounts of VOCs in the breath decreased spontaneously to control values without peritonitis. These results indicate that peritonitis shock is accompanied by development of volatile organic compounds that may be generated by digestive enzymes in the small intestine. VOCs may serve as indicators for detection of early forms of autodigestion by digestive proteases.
Introduction

One of the major requirements for effective intervention in shock is early detection of signs for progression towards organ failure. There are a large number of blood indicators for shock which range from monitoring of small molecules, like blood oxygen values, to detection of elevated blood plasma values of lactate or inflammatory markers such as complements and cytokines (1-3). Selected combinations of lower molecular weight (up to 1.5kD) metabolomic markers (e.g. organic acids, lipids, amino acids, carbohydrates, peptides, vitamins, steroids, xenobiotics) in exhaled breath condensates were proposed to characterize patients with shock and respiratory failure (4). But there is a need to explore non-invasive early indicators for end organ damage that serve to minimize delay in diagnosis and facilitate interventions to attenuate progression into multi-organ failure.

Volatile organic compounds (VOCs) have been identified as possible approaches for non-invasive detection of several diseases, e.g. cancers, acute lung injury, tuberculosis, liver disease, myocardial infarction (5-11). VOCs include acetone, acetaldehyde, alkanes, amines, benzenes, pentane, sulfur compounds, and many others (12). After endotoxic administration in the rat, compounds like propanol, butanal, acetophenone, butandiol, hexanone, dimethylether, pentafluoropropionamide, xylene, propanol, toluene and others have been proposed to serve a multivariate diagnostic analysis of shock versus control animals (13). Alcohols and ketones (e.g. propanol, pentanone, acetone, hexanone) were reported to decrease over a six hour period in cecal ligation and endotoxin shock but not in hemorrhagic shock (14). In a study with Wiggers hemorrhagic shock 16 different VOCs changed in shock compared to controls, five of which had higher intensities, nine had lower intensities during hypotension and 9 hours thereafter, and two increased only during the hypotensive period (15). It is largely uncertain what mechanisms are
involved in the formation of VOC and whether their detection may serve as a diagnostic tool to evaluate the effectiveness of therapy. This is the objective of the current report.

Our increasing evidence suggests that pancreatic digestive enzymes in the small intestine and digestive fragments they produce may play a central role in the development of organ failure by escape from the lumen of the intestine after breakdown of the mucosal barrier (16). As digestive enzymes enter into the wall of the intestine, they break down the mucosal lining (17) and start an autodigestion process, which leads to multi-organ failure and death if uninterrupted (18). During this process not only the food content of the intestine, as is the case during normal digestion, but also autologous tissue is degraded to the point that morphological features associated with the intestinal mucosa are destroyed. The process starts at the tip of villi in the small intestine already within minutes of an ischemic insult (19) and can lead to complete destruction of the villi (20-23).

Introduction of ischemia causes formation of VOCs detected by gas chromatography (24). But their source in the tissue remains uncertain. We hypothesize that in experimental peritonitis shock distinct VOCs are generated during proteolytic degradation of the small intestine and are detectable in the breath. Accordingly, we present measurements of VOCs before and after peritonitis shock without and with blockade of the pancreatic proteases in the lumen of the intestine.
Methods

Animals

The animal protocol was reviewed and approved by the UC San Diego Animal Subjects Committee. Young mature Wistar rats (age 15 to 20 weeks, 350-450 grams body weight, Harlan Sprague Dawley) were maintained on a regular diet (Harlan Teklad Rodent diet (W) 8604, 0.29% sodium by weight) without restriction and water ad libitum. After general anesthesia (pentobarbital sodium, 50 mg/kg, Abbott Laboratories, i.m.), the body temperature was maintained at 37°C by keeping the animals on a water-heated support and by use of a heat blanket. At the end of the six-hour observation period the animals were euthanized (120 mg/kg, Beuthanasia-D Special, Merk Animal Health).

Peritonitis Shock

In this shock model, cecal material (900 mg/kg derived from a mixture of multiple donor rats, diluted by addition of 1 ml of 5% glucose saline solution to 1 gm cecal material) was injected into the peritoneal cavity and gently spread by mild skin compression over the abdomen. Control animals without peritonitis were administered the glucose saline solution without cecal material.

Digestive Enzyme Blockage

The digestive enzymes were blocked at 60 min after cecal material administration as described (16). Briefly, to block digestive enzymes in the lumen of the intestine, a mid-line incision (2.5 cm) was made to temporarily expose the small intestine. Tranexamic acid (127 mM, Pfizer Inc.) dissolved in GoLYTELY (60 g/L PEG-3350 and electrolytes for oral solution; Braintree Laboratories,
Inc) was injected with a needle (BD Sub-Q 26G 5/8, Becton Dickinson & Co) into the lumen of the intestine from the duodenum to the cecum. Untreated shock controls received GoLYTELY without the protease inhibitor. In a 350 gm rat a total fluid volume of 15 ml (at 39°C) was injected into the lumen of the small intestine spaced over 8 injections in intervals of about 5 cm and 2 ml was injected into the cecum. The intestine was returned into the peritoneal cavity and the incision closed by sutures.

In addition to the enteral protease inhibition, a mixture was also administered as lavage into the peritoneum composed of tranexamic acid (2 ml; 127 mM dissolved in saline), an antibiotic (ciprofloxacin, 10 mg/ml, Hospira, Inc), and albumin (40 mg/ml, Sigma-Aldrich Co) at one hour after placement of cecal material. The mixture serves to inhibit not only digestive enzymes, but also bacteria and lipid cytotoxic mediators (e.g. unbound free fatty acids) that were administered by the cecal material into the peritoneum. The untreated peritonitis shock group received the same volume of saline into the peritoneum and the same volume of GoLYTELY into the lumen of the intestine but without additives. To determine the role of the enteral treatment in VOC generation, we also studied a group of shock rats (n = 3) with peritoneal treatment only (using the same mixture) but without enteral treatment.

Breath Analysis

To collect exhaled air, a tracheotomy was carried out for placement of a two-way non-rebreathing valve. Exhaled breath samples were collected in Tedlar gas sample bags (1 L, Jensen Inert, Coral Springs, Florida) placed at the end of the tracheostomy tube. A two-way non-rebreathing valve (series 2300 T-shape; Hans Rudolph, Inc., Shawnee, Kansas) was used for collection of exhaled air into gas sampling bags. Control breath samples were collected before laparotomy to block
digestive enzymes. Room air samples were collected as controls for inspired air. Samples were collected in intervals of 30 min over the first hour and then hourly for 6 hours.

The gas sample bags were kept at room temperature and analyzed within a period of two hours after collection. Repeat measurements of the same air sample over a period of seven days showed that there was no significant loss of VOCs in the bags, for example due to absorption to the Tedlar bags.

The presence of VOCs was detected by use of gas chromatography (Z-Nose Ultra-Fast GC, Model 4200, MicroSense 5.44 GC analysis software, Electronic Sensor Technology, Newbury Park, CA). The settings on the gas chromatography were standardized (sensor temperature 30°C, column temperature 40°C, valve temperature 140°C, inlet temperature 200°C, trap temperature 250°C, flow 3.0 ccm-helium carrier gas; sample time = 30 seconds; temperature ramp = 200°C at 5°C/sec). Before measurements, the gas chromatography chamber was cleaned by heat (205°C) running helium through the system in a continuous mode until a background was reached with little activity. For calibration of the Kovach index (KI), an alkane calibration (n-alkane vapors C6-C14; Electronic Sensor Technology) solution was tested five consecutive times. The chromatography profile was digitally scanned and peak amounts were determined with peak-detection software provided with the Z-nose. The values are expressed in form of “amount” (i.e. digital detector GC output).

A list of 25 VOCs was tested with the same GC settings to determine their associated KI values (acetone; amine; n-butyl acetate; 2-butanone; t-butanol; butyraldehyde; benzaldehyde; cadaverine; carbon disulfide; chlorobenzene; dimethyl sulfide; 1,4-diaminobutane; 1,5-diaminopentane; 1,2-dichloroethane; ethanol; indole; limonene; 6-methyl-5-hepten-2-one; 4-methylphenol; pentanoic acid; 1-propanol; putrescine; methylamine N-oxide, TMAO; o-xylene). The list was derived from
literature values for gastrointestinal, respiratory and cancer patients and associated in part with tissue decay (6, 11, 25-32). Each compound was dissolved in distilled water and the supernatant tested in the GC. The KI values for these compounds were compared with the KI values determined in the breath samples of the rats.

Statistics

All measurements are summarized as mean ± standard deviation. Repeated measures ANOVA followed by Bonferroni post-hoc test was used to compare sham controls with untreated and treated shock groups. Comparison between treated and untreated groups was carried out by Student’s t test. P<0.05 was considered significant.

Results

The control breath samples had a gas chromatography profile that was similar among the control animals with relatively small variation among rats (typical variance about 10%). During peritonitis shock breath samples exhibited shifting peak amounts at distinct KI values, some of the peak amounts increased and some also decreased (Figure 1).
Analysis of changes in peak amounts over a range of KI values between about 600 and 2000 showed that the peak amounts at KI 720, 900, and 1550 in the breath (Figure 2) exhibited significant differences between sham control and shock. While in sham controls the peak amounts did not rise significantly over the 6-hour period of the current experiments, in peritonitis shock the peak amounts at KI 720, KI 900 and KI 1550 monotonically and significantly rose. The rise occurred already within the first hour of the peritonitis and there was no trend for a reduction of peak amounts over the course of the experiment.

In contrast, after the combined enteral/peritoneal treatment and blockade of the digestive enzymes with tranexamic acid at 1 hour, the peak amounts started to decrease and after 6 hours fell to values that were not different compared to non-shock controls (Figure 2). The decreases in peak amounts were only observed after treatment. The enteral treatment is essential for the reduction of the VOC amounts. Without enteral administration and only peritoneal treatment in shock animals, there was no reduction of the peak amounts and their values without significantly difference compared to the untreated peritonitis group (Figure 2, legend).

Peak amounts at KI values, other than at 720, 900 and 1550 exhibited no significant changes in the current exhaled gas analysis, although several peak amounts reached close to significant values.

Among the set of VOCs we tested (see Methods), 1,4-diaminobutane (Lot# STBC1987V, SIGMA-Aldrich Co.) had a KI at 720±5 and trimethylamine N-oxide (TMAO, 317594, SIGMA-Aldrich Co.) a KI of 900±5. We could not find in this list a compound that had a peak amount at KI 1550. All
other VOC peak amounts fell at least by a value of ±50 outside the KI values observed in the breath samples. Both 1,4-diaminobutane and TMAO have a strong foul odor.

Discussion

The current results indicate that in experimental peritonitis the breath contains within less than an hour elevated levels of VOCs over several hours that can be inhibited by enteral protease inhibition in the small intestine, but not without it. These measurements are in line with qualitative observations during a previous study with an identical peritonitis shock model (16) as well as other forms of shock (including hemorrhagic and endotoxic shock) in which we noticed foul volatile odor originating from the small intestine. Without exception (18 out of 18 rats examined) the odor was noticed in those animals that succumb to the insult, but less so in surviving animals. In addition to mortality the presence of the odor was accompanied by escape of digestive proteases into the wall of the intestine, lesion formations in the small intestine and the lung. All animals in these studies were maintained with food and water at libitum at the time before shock. Therefore the small intestines were in part filled with food items so that the pancreatic digestive enzymes in the partially digested food and/or the wall of the intestine could serve as a source of the VOCs (16).

A combination of enteral and peritoneal placement of tranexamic acid, a serine protease inhibitor, e.g. for pancreatic trypsin (17), served to reduce the VOC amounts. The protection provided by inhibition of the digestive proteases in the intestine and peritoneum includes beside a reduction of the mortality also a significant reduction of the lesions in the small intestine, heart and lung, including a reduction of the protease activity in the wall of the small intestine and in plasma. Inhibition of the pancreatic digestive enzymes in hemorrhagic shock also reduces the development of insulin resistance by proteolytic cleavage of the ectodomain of the insulin receptor (33). This
evidence suggests that the powerful digestive enzymes in the small intestine may be a major producer for the VOCs that eventually appears in expired air. The VOCs appear to be carried in the plasma and diffuse into the airways.

The VOCs found in this study could be detected without the use of a chemical concentrator during sample collection. They are in sufficient concentrations to be detectable by unaided human smell sensor. Among specific VOCs with equal KI values as seen in the breath samples were 1,4-diaminobutane, TMAO and a volatile compound whose identity remains to be identified. TMAO is a foul smelling compound with below body temperature melting points. It is a metabolite from dietary phosphatidylcholine (e.g. lecithin) and can be generated by certain intestinal bacteria (e.g. by generation of trimethylamine which can be transformed into TMAO) (34). Elevated levels of TMAO have been associated with cardiovascular risk (25, 35).

The mechanism by which the TXA protease inhibition blocks the formation of TMAO, as seen in the current experiments, remains to be identified. TXA was administered enterally and by lavage into the peritoneal cavity around the intestine. The fact that it serves to acutely reverse VOCs formation indicates that their formation is ongoing and protease dependent. The fact that the peritoneal without enteral blockade is inadequate to block the formation of the VOCs (Figure 2, legend) suggests that the digestive enzymes in the lumen of the small intestine are centrally involved. A source for the odor may be food material in the lumen of the intestine, as seen in fecal material (12), but could also include intestine itself, since digestive enzymes enter the wall of the intestine in shock. TXA serves to preserve the mucosal barrier. If a source of the foul smelling VOCs is in the lumen of the intestine, then the preservation of the barrier my reduce entry of the VOC into the circulation and into the breath. If the source of the VOCs is in the wall of the intestine, the mode of action by TXA is to prevent proteolytic degradation of intestine and also other tissues.
into which digestive protease leak during peritonitis shock.

TXA is recognized and marketed as an anti-fibrinolytic agent, able to block formation of plasmin when administered i.v.. But its actions as protease inhibitor appear to be broader. In the current application it was used to block serine proteases (e.g. trypsin) in the lumen of the small intestine without i.v. infusion. Enteral blockade of digestive enzymes serves to attenuate a variety of tissue injuries, organ dysfunctions and failures in multiple models of shock (16, 33), and thus the current observation for attenuation of VOCs is in line with the evidence for other forms of protection from digestive enzymes.

We consistently smelled VOCs from the intestine in non-surviving animals that were subject to hemorrhagic shock, a model without the use of cecal material with bacteria or an antibiotic agent in the peritoneum. While measurements of VOCs with and without antibiotic treatment (as compared to enteral protease inhibition) in shock remain to be carried out, this evidence suggests that VOCs can be formed without a major bacterial load.

Key questions to be investigated are whether VOCs in shock patients detected by an electronic breath sensor are similar to those seen in experimental models and if present whether they serve to predict impending organ failure before it reaches an irreversible stage associated with actual organ failure. The current evidence indicates that VOC generation is an early event in a peritonitis induced shock model but the amounts detected in the breath may depend on the extent of intestinal damage. In the current model the major length of the small intestine wall tissue is subject to infiltration by digestive enzymes (16) and a potential source for VOCs. If in other situations shorter segments of the small intestine become ischemic and are infiltrated by digestive enzymes the magnitude of the VOCs detected in the breath may be lower. This situation in ICU patients is
largely unknown and will require clinical measurements from the time of earliest access to breath samples.
References

Figure Legends

Figure 1. An example of GC profile for control without peritonitis (Control group), untreated peritonitis (Shock group) and peritonitis with treatment by inhibition of the digestive proteases with TXA (Shock Treated, see Methods). Note elevation of peak amounts, e.g. at KI 720, 900, and 1550.

Figure 2: The amounts of VOCs at KI (a) 720, (b) 900, and (c) 1550 measured over a period 6 hours from rat breath samples after exposure to peritonitis shock without (Shock group) and with enteral protease inhibition with TXA (Treated group) at 1 hour after initiation of the peritonitis. Control represents a sham group without peritonitis. n = 6 to 8 rats in each group. Amounts of VOCs in a separate group (n = 3 rats) with peritonitis shock but with treatment in the peritoneum only (with same mixture, see Methods) and without enteral treatment gave values that were not significantly different compared to the untreated Shock group. At 6 hours the amounts of VOCs in this group with peritoneal treatment only at KI 720, 900, and 1550 were 315 ± 43, 117 ± 34, 483 ± 61, respectively. *p<0.05 Control vs Shock group; †p<0.05 Shock vs Treated group; ‡p<0.05 Control vs Treated group.
At 0 minutes post hypotension
Open Access License Agreement

This OPEN ACCESS LICENSE AGREEMENT (this “Agreement”), dated as of.
03/30/2017

DATE

(the “Effective Date”), by and between Wolters Kluwer
Health, Inc., operating as Medical Research / Lippincott
Williams & Wilkins, a Delaware corporation, having its
principal place of business at Two Commerce Square, 2001
Market Street, Philadelphia, PA 19103 (the “Publisher”), and
the corresponding author listed on Schedule A to this
Agreement (the “Author”, and together with the Publisher,
the “Parties”).

1. Grant of License

The Author hereby grants to the Publisher and its Affiliates
the exclusive, worldwide, royalty free, perpetual (for the
duration of the applicable copyright) right and license to use
the Work for all commercial or educational purposes,
including, but not limited to, publishing, reproducing,
marketing, distributing (themselves and through distributors),
sublicensing, and selling copies of the Work throughout the
world for the Term. If the Author is a United States
government employee, such license grant shall be limited to
the extent the Author is able to grant such license.

2. Warranties, Indemnification, and Limitation of Liability

a. The Author represents and warrants that:

(i) it has the right and power to enter into this
Agreement, to grant the rights and licenses granted pursuant
to this Agreement, and to perform all of its other obligations
contained in this Agreement;

(ii) it has not previously assigned, transferred or
otherwise encumbered the rights or licenses granted
pursuant to this Agreement; and that the person executing
this Agreement on the Author’s behalf is authorized to do
so;

(iii) the Work and the licenses granted herein do not
and will not infringe upon, violate or misappropriate any
intellectual property rights or any other proprietary right,
contract or other right or interest of any third party;

(iv) if the Work is a multi-authored Work, the Author
has obtained written permission from each author of the
Work to enter into this Agreement on behalf such author,
and each such author has read, understands and has agreed
to the terms of this Agreement; and

(v) the Author has obtained any necessary releases
and permissions to quote from other sources in the Work
and to include any works and materials in the Work and all
such releases and permissions are in full force and effect.

b. The Author hereby indemnifies the Publisher and its
directors, officers, employees, agents, and representatives
and agrees to defend and hold them harmless from and
against any and all liability, damage, loss, costs or expenses
(including reasonable attorney’s fees and costs of settlement)
incurred by any such party arising out of, or relating to any
misrepresentation in, or breach or alleged breach of the
Author’s representations or warranties in this Agreement. If
the Author fails to promptly or diligently pursue any defense
of any indemnified party, the indemnified parties, or any of
them, may assume such defense at the Author’s expense.
The obligations of this indemnification will survive any
termination or expiration of this Agreement.

c. The Publisher represents and warrants that it has the right
and power to enter into this Agreement and to perform its
obligations contained in this Agreement, and that the person
executing this Agreement on the Publisher’s behalf is
authorized to do so.
d. The Publisher hereby indemnifies the Author and agrees to defend and hold the Author harmless from and against any and all liability, damage, loss, costs or expenses (including reasonable attorney’s fees and costs of settlement) incurred by the Author arising out of, or relating to any misrepresentation in, or breach or alleged breach of the Publisher’s representations or warranties in this Agreement. If the Publisher fails to promptly or diligently pursue any defense of the Author, the Author may assume such defense at the Publisher’s expense. The obligations of this indemnification will survive any termination or expiration of this Agreement.

e. EXCEPT AS OTHERWISE SET FORTH IN THIS AGREEMENT, NEITHER PARTY MAKES ANY OTHER, AND HEREBY DISCLAIMS ALL OTHER, REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.

f. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL EITHER PARTY BE LIABLE TO THE OTHER PARTY BASED UPON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF A PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3. Creative Commons License.
Creative Commons Licenses are subject to items selected in item 1, 2 and 3 in the Schedule B.

a. CC BY-NC-ND – NonCommercial-NonDerivatives Creative Commons License

The Author acknowledges and agrees that the Work will be published by the Publisher in (the "Journal") and made freely available to users under the terms of the Attribution-NonCommercial-NoDerivs 4.0 Creative Commons License, as currently displayed at http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode (the “CC BY-NC-ND”). The Author acknowledges and agrees that that Publisher is the exclusive “Licensor”, as defined in the CC BY-NC-ND, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY-NC-ND.

b. CC BY – Creative Commons License

The Author acknowledges and agrees that the Work will be published by the Publisher in (the "Journal") and made freely available to users under the terms of the Attribution 4.0 Creative Commons License, as currently displayed at http://creativecommons.org/licenses/by/4.0/legalcode (the “CC BY”). The Author acknowledges and agrees that that Publisher is the exclusive “Licensor”, as defined in the CC BY, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY.

c. CC BY-NC – NonCommercial Creative Commons License

The Author acknowledges and agrees that the Work will be published by the Publisher in (the "Journal") and made freely available to users under the terms of the Attribution-NonCommercial 4.0 Creative Commons License, as currently displayed at http://creativecommons.org/licenses/by-nc/4.0/legalcode (the “CC BY-NC”). The Author acknowledges and agrees that that Publisher is the exclusive “Licensor”, as defined in the CC BY-NC, of the Work and that the Publisher may make the Work freely available to all users under the terms of the CC BY-NC.

4. Royalties.
The Author acknowledges and agrees that this Agreement entitles the Author to no royalties or fees. To the maximum extent permitted by law, the Author waives any and all rights the Author may have to collect royalties or other fees in relation to the Work or in respect of any use of the Work by the Publisher or its sublicensees.

5. Miscellaneous.

a. Assignment. This Agreement may not be assigned or transferred, in whole or in part, by either party without the prior written consent of the other party. Notwithstanding the above, the Publisher may assign this Agreement without the written consent of the Author (i) to an entity succeeding, whether by sale, merger or other corporate reorganization,
to substantially all of the Publisher’s assets and business activity, or (ii) to a corporation or organization that obtains the right to publish the Journal from the Publisher. The Publisher may assign this Agreement to any of its affiliates. This Agreement will be binding upon and inure to the benefit of the parties hereto and their respective successors and permitted assigns.

b. Counterparts. This Agreement may be executed in two or more counterparts, each of which shall be deemed an original, but all of which together shall constitute one and the same document. Facsimile or Portable Document Format (PDF) signatures will be deemed original signatures for purposes of this Agreement.

c. Entire Agreement; Amendment. This Agreement sets forth the entire agreement of the parties on the subject hereof and supersedes all previous or contemporaneous oral or written representations or agreements relating to the rights and duties provided herein, and may not be modified or amended except by written agreement of the parties.

d. Force Majeure. Neither party shall be liable for any default or delay on its part in performing any obligation under this Agreement if such default or delay is caused by natural disaster, accident, war, civil disorder, strike or any other cause beyond the reasonable control of such party. In the event that either party is prevented by such an occurrence or circumstance for a period of more than ninety (90) days from fulfilling its obligations under this Agreement, the other party may terminate this Agreement upon thirty (30) days' written notice.

e. Governing Law. This Agreement shall be governed in all respects according to the laws of the State of New York without giving effect to the principles of conflict of law thereof.

f. Headings. All headings are for reference purposes only and shall not affect the meaning or interpretation of any provision hereof.

g. Severability. If any provision of this Agreement is held to be illegal, invalid, or unenforceable under the present or future laws, then such provision shall be revised by a court of competent jurisdiction to be enforceable if permitted under applicable law, and otherwise shall be fully severable. In any event, this Agreement shall be construed and enforced as if such illegal, invalid, or unenforceable provision had never comprised a part of this Agreement, and the remaining provisions of this Agreement shall remain in full force and effect and shall not be affected by the illegal, invalid, or unenforceable provision or by its severance from this Agreement.

h. Status of the Parties. The parties are independent contractors. Nothing in this Agreement is intended to or shall be construed to constitute or establish any agency, joint venture, partnership or fiduciary relationship between the parties, and neither party has the right or authority to bind the other party nor shall either party be responsible for the acts or omissions of the other.

i. Waiver; Amendment. The waiver by either party of or the failure by either party to claim a breach of any provision of this Agreement shall not be, or be held to be, a waiver of any subsequent breach or affect in any way the further effectiveness of any such provision. No term or condition of this Agreement may be waived except by an agreement by the parties in writing.

j. Waiver of Jury Trial. EACH PARTY HEREBY WAIVES ITS RIGHT TO A JURY TRIAL IN CONNECTION WITH ANY DISPUTE OR LEGAL PROCEEDING ARISING OUT OF THIS AGREEMENT OR THE SUBJECT MATTER HEREOF.

[Signature Page Follows]
Schedule A

This Schedule A must be completed by Author in its entirety. The Publisher is unable to publish the Work unless this Schedule A is completely filled out.

<table>
<thead>
<tr>
<th>Article Tracking #</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOCK-D-16-00226R2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Article Title (the “Work”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Decay Products in Breath during Peritonitis Shock are Attenuated by Enteral Blockade of Pancreatic Digestive Proteases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corresponding Author Name (the “Author”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Schmid-Schönbein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copyright Owner’s Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOCK</td>
</tr>
</tbody>
</table>

Name of Journal in which Work is to be Published

Schedule B

This Schedule B must be completed by Author in its entirety. The Publisher is unable to publish the Work unless this Schedule B is completely filled out.

MANDATED FUNDING POLICY DISCLOSURE

1. Choose a funder from the drop down list. If any of the following are selected please complete Item 2.

 National Institute for Health Research (NIHR)

NOTE: If you are a World Health Organization Employee and are required to publish under the Creative Commons CCBY IGO license, then do not complete this form. Instead, please contact the Editorial Office for the separate WHO Employee license agreement.

2. If you have selected funding from the above list in 1., please disclose the Open Access option to which the Work will be subject. Selecting “Gold Route” will ensure that your work is published under the Creative Commons CCBY license.

 Gold route

 [] Gold route

 [] Green route

NOTE: If the “Gold” route has been selected, Section 3.b. of the Agreement will apply to the Work, and neither Section 3.a. nor Section 3.c. of the Agreement will apply to the Work. If the “Green” route has been selected, Section 3.c. of the Agreement will apply to the Work after an embargo, and neither Section 3.a. nor Section 3.b. of the Agreement will apply to the Work.
3. □ This Schedule B is inapplicable to the Work.

NOTE: If author has selected Item 3, Section 3.a. on the Agreement will apply to the Work, and neither Section 3.b. nor Section 3.c. of the Agreement will apply to the Work.

GOVERNMENT EMPLOYEES

4. □ This work was created in the course of an author’s employment by the United States Government

If the Work or a portion of it has been created in the course of any author's employment by the United States Government, check the "Government" box at the end of this form. A work prepared by a government employee as part of his or her official duties is called a "work of the U.S. Government" and is not subject to copyright. If it is not prepared as part of the employee’s official duties, it may be subject to copyright.

If “Government” is chosen, please do not choose a Creative Commons License. The work will be published with “Written work prepared by employees of the Federal Government as part of their official duties is, under the U.S. Copyright Act, a “work of the United States Government” for which copyright protection under Title 17 of the United States Code is not available. As such, copyright does not extend to the contributions of employees of the Federal Government.”

NOTE: If author has selected Item 4, Section 3, on the Agreement will not apply to the Work.
The Corresponding Author acknowledges and agrees that the Corresponding Author is entering into, and has executed, the Agreement on behalf of the Corresponding Author and each other author named as contributing to the Article (each such author, an “Author”, and collectively, the “Authors”). The Corresponding Author represents and warrants that the Corresponding Author has obtained permission from each Author to enter into the Agreement on behalf of such Author and the Corresponding Author and each Author has read, understands, and has agreed to the terms of the Agreement, including, without limitation, the terms contained in the Agreement with respect to authorized reuse of the Article.

IN WITNESS WHEREOF, the Author has executed this License, effective as of the Effective Date.

Geert W. Schmid-Schönbein

PRINT NAME

Geert W. Schmid-Schönbein

SIGNATURE

Important Note: Once you electronically sign this form, you will not be able to make any additional changes to it.

To electronically sign this form, click the signature field above and provide the information requested in the dialog boxes.