Title
LAMB SHIFT IN HELIUMLIKE URANIUM (U 90+)

Permalink
https://escholarship.org/uc/item/9tn3w0xt

Authors
Munger, C.T.
Gould, H.

Publication Date
1986-08-01
Submitted to Physical Review Letters

LAMB SHIFT IN HELIUMLIKE URANIUM (U^{90+})

C.T. Munger and H. Gould

August 1986

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Lamb Shift in Heliumlike Uranium (U$^{90+}$)

Charles T. Munger and Harvey Gould

Materials and Molecular Research Division, Building 71-259
Lawrence Berkeley Laboratory, University of California,
Berkeley, California 94720

We report a value of 70.4 (8.1) eV for the one-electron Lamb shift in uranium, in agreement with the theoretical value of 75.3 (0.4) eV. We extract our Lamb shift from a beam-foil time-of-flight measurement of the 54.4 (3.3) ps lifetime of the 1s2p$_{1/2}$ 3P_0 state of heliumlike uranium.

PACS numbers: 12.20.Fv, 31.30.Jv, 32.70.Fw

A possible failure of quantum electrodynamics (QED) to predict accurate radiative corrections to bound states at $Z = 92$ is not ruled out by its success at low Z. The largest contribution to the Lamb shift at $Z = 92$ comes from terms in the electron self-energy\(^1\) which are high powers of $Z\alpha$ and which are invisible in experiments at low Z. Lamb shift measurements on high-Z electronic and muonic atoms are complementary because muonic atom measurements are sensitive to higher order vacuum polarization effects but not to self-energy effects\(^2\).

We report a value of 70.4 (8.1) eV for the one-electron Lamb shift in uranium. It is in agreement with the theoretical value\(^3\)\(^4\) of 75.3 (0.4) eV based upon a calculation of the self-energy by Mohr\(^3\). We extract our Lamb shift from our beam-foil time-of-flight measurement of 54.4 (3.3) ps for the lifetime of the 1s2p$_{1/2}$ 3P_0 state of heliumlike uranium.

The 1s2p$_{1/2}$ 3P_0 state (Fig. 1) is the only low-lying excited state found in hydrogenlike uranium or heliumlike uranium whose long lifetime allows its decay to be observed in vacuum downstream from the target in which it is produced. In heliumlike uranium the 1s2p$_{1/2}$ 3P_0 state decays 70% of the time to the 1s2s 3S_1 state by an electric-dipole (E1) transition. This makes the 1s2p$_{1/2}$ 3P_0 lifetime sensitive to the 1s2p$_{1/2}$ 3P_0 - 1s2s 3S_1 energy difference of 260.0 (7.8) eV (experimental value) and hence
to the Lamb shift. At $Z=92$ the major contributions to the calculated Lamb shift are the self-energy 3 of 56.7 eV, the leading order term in the vacuum polarization 3,4 of -14.3 eV and the finite nuclear size correction 4 of 32.5 eV. In heliumlike uranium there is also a small screening correction to the radiative corrections - expected to be of order $1/Z$ times the self-energy 2,5. For zero Lamb shift the $1s2p_{1/2} \ ^3P_0 \rightarrow 1s2s \ ^3S_1$ states would be split by the difference in the $1s_{1/2} - 2s_{1/2}$ and $1s_{1/2} - 2p_{1/2}$ Coulomb interactions. This splitting at $Z = 92$ has been calculated by Mohr 6 to be 330.4 eV, which agrees (1 eV) with the calculations of Lin, Johnson and Dalgarno 7 and of Drake 8. The other significant decay of the $1s2p_{1/2} \ ^3P_0$ state is to the $1s^2 \ ^1S_0$ ground state by a two-photon electric-dipole magnetic-dipole (E1M1) transition 8. To obtain the Lamb shift we combine our measured $1s2p_{1/2} \ ^3P_0 - 1s2s \ ^3S_1$ E1 matrix element 9, and the $1s2p_{1/2} \ ^3P_0 - 1s2s \ ^3S_1$ Coulomb splitting 6.

In our beam-foil time-of-flight measurement about 0.5% of a beam of 218 MeV/amu hydrogenlike uranium is converted to the $1s2p_{1/2} \ ^3P_0$ state of heliumlike uranium by electron capture in a 0.9 mg/cm2 Pd foil. Hydrogenlike uranium 10 is obtained from the Lawrence Berkeley Laboratory’s Bevalac11. Downstream from the Pd foil we observe, not the 260 eV photon from the $1s2p_{1/2} \ ^3P_0 \rightarrow 1s2s \ ^3S_1$ transition, but instead the 96.01 keV x ray from the subsequent fast decay of the $1s2s \ ^3S_1$ state to the $1s^2 \ ^1S_0$ ground state. The 96.01 keV x-ray is much easier to detect than the 260 eV photon, and the $1s2s \ ^3S_1$ lifetime 7 of 10^{-14} s has no effect on the measured $1s2p_{1/2} \ ^3P_0$ lifetime provided sufficient time is allowed for the initial $1s2s \ ^3S_1$ population to decay.

Fig. 2 shows a spectrum recorded by one of our Ge x-ray detectors collimated to view emission perpendicular to the uranium beam at a point 0.67 cm downstream from the Pd foil. The 96.01 keV x ray from the $1s2p_{1/2} \ ^3P_0$-fed $1s2s \ ^3S_1 \rightarrow 1s^2 \ ^1S_0$ decay is Doppler shifted and appears as a peak at 77.76 (0.18) keV. We identified this peak by its correct transverse Doppler shift and exponential decay at two different beam energies, 218 MeV/amu and 175 MeV/amu (here determined from the operating conditions of the Bevalac and corrected for energy loss in foils); by the dependence of the Doppler broadened peak width on the angular acceptance of the detector; by the yield 12 using foils of different Z and thickness; by the peak’s absence when the foil is removed; and by the lack of any other long-lived, low-lying states of heliumlike uranium or hydrogenlike uranium besides the $1s2p_{1/2} \ ^3P_0$ state.

The height of the peak above background was found by a maximum-likelihood fit of a quadratic to the background. The decay curve (Fig. 3), which spans 2.7 decay lengths, is a maximum-likelihood fit of a single exponential to the data. The reduced χ^2.
for the fit is 0.89. The spectrum shown in Fig. 2 contributes to the first point at 0.67 cm in Fig. 3. The 1/e decay length is 1.182 (0.069) cm, and the 5.8% statistical error dominates our final error in the 1s2p_{1/2} 3P_0 lifetime. Other contributions to our 6.2% total lifetime error are: 1.2% from the determination of the beam velocity and time dilation using the transverse Doppler shift of the 1s2s 3S_1 \rightarrow 1s^2 1S_0 transition and 1.8% from the experimental upper limit to contamination of our signal by cascade feeding. Our value for the 1s2p_{1/2} 3P_0 lifetime is 54.4 (3.3) ps.

A disadvantage in using the 1s2p_{1/2} 3P_0-fed 1s2s 3S_1 \rightarrow 1s^2 1S_0 decay as a signal is that it makes the measured 1s2p_{1/2} 3P_0 lifetime sensitive to cascade feeding of the 1s2s 3S_1 state. States of heliumlike uranium with principal quantum number (n) < 22 will cascade to the 1s^2 1S_0 ground state before we begin our measurement of the 1s2p_{1/2} 3P_0 lifetime. Only the very small population of states with n \geq 22 and high total angular momentum (J) can perturb our measurement by cascading down the chain of yrast states (states of J= n) to reach the 1s2p_{3/2} 3P_2 state. The 1s2p_{3/2} 3P_2 state (Fig. 1) decays 2/3 of the time to the 1s^2 1S_0 ground state but also decays 1/3 of the time to the 1s2s 3S_1 state, contaminating our 1s2s 3S_1 \rightarrow 1s^2 1S_0 signal. We set a limit to this contamination by searching for the 100.5 keV x ray from the 1s2p_{3/2} 3P_2 \rightarrow 1s^2 1S_0 transition, which would appear as an isolated peak Doppler shifted to 81.4 keV. The count rate in this supposed peak, after subtraction of the background, is plotted in Fig. 3. The count rate is consistent with zero with an uncertainty which contributes 1.8% to the uncertainty in the 1s2p_{1/2} 3P_0 decay length. Cascades from high n,J states in the hydrogenlike fraction of our beam feed the 2 2P_{3/2} \rightarrow 1 2S_{1/2} transition at 102.2 keV and will not interfere with our signal.

From our 1s2p_{1/2} 3P_0 lifetime of 54.4 (3.3) ps and Drake's calculated E1M1 decay rate\(^8\) of 0.564(5) \times 10^{10} s^{-1} we obtain a 1s2p_{1/2} 3P_0 - 1s2s 3S_1 E1 decay rate of 1.273 (0.113) \times 10^{10} s^{-1}. Using the dipole length formula for the E1 decay rate\(^9\):
\[
A = 12ak^3 (Z\alpha)^2 [0.792+0.759/Z]^2 (\hbar= m= c= 1)
\]
we find for k, the 1s2p_{1/2} 3P_0 - 1s2s 3S_1 splitting, a value of 260.0 (7.7) eV. Subtracting the calculated Coulomb contribution\(^6\) of 330.4 eV yields a Lamb shift of 70.4 (7.7) eV.

So far we have accounted only for experimental uncertainty; theoretical uncertainty comes from the effect of small terms omitted from the calculations. We estimate that a Z^{-1} (Z\alpha)^2 correction to the 1s2p_{1/2} 3P_0 - 1s2s 3S_1 E1 matrix element, and a 1/Z correction to the E1M1 decay rate, contribute a total of \approx 1 eV to our inferred 1s2p_{1/2} 3P_0 - 1s2s 3S_1 splitting; that a Z^{-2} (Z\alpha)^6 term contributes \approx 2 eV to the 330.4 eV Coulomb splitting of the 1s2p_{1/2} 3P_0 - 1s2s 3S_1 states; and that a 1/Z screening correction to the self energy, vacuum polarization and finite nuclear size contributes \approx
1 eV to the Lamb shift. These combine to give a separate theoretical error of 2.4 eV in our extracted value of the Lamb shift.

In conclusion, we have measured the Lamb shift in uranium. Our final value of 70.4 (8.1) is in agreement with the theoretical value\(^3,4\) of 75.3(0.4) eV.

We thank Mr. Roy Bossingham, Dr. Benedict Feinberg, Mr. Walter L. Kehoe, Dr. Richard McDonald, Professor Richard Mowat, and Dr. Alfred Schlachter for assistance in running the experiment. We thank Professor Gordon W.F. Drake, Professor Walter R. Johnson, and Dr. Peter J. Mohr for many helpful discussions and for providing unpublished numbers. We especially thank the operators, staff and management of the Bevalac for making experiments with few-electron uranium possible. This work was supported by the Director, Office of Energy Research: Office of Basic Energy Sciences, Chemical Sciences Division; and in part by the Office of High Energy and Nuclear Physics, Nuclear Science Division, of the U.S. Department of Energy under Contract No. DE-AC-03-76SF00098.

FIG. 1. Energy level diagram of the n=1 and n=2 states of heliumlike uranium. Decay rates, except for the 1s2p1/2 3P0 state, are taken from Ref. 7. Energies are taken from Ref. 3,4,7. M1 and M2 decays are magnetic-dipole and magnetic-quadrupole decays, respectively, and decays without labels are electric-dipole decays. An approximate radiative width is indicated for the 1P1 and 3P1 states.

FIG. 2. Spectrum recorded by a Ge x-ray detector collimated to view emission perpendicular to the uranium beam at a point 0.67 cm downstream from the Pd foil. This spectrum represents 135 minutes of counting - about 10⁸ uranium ions. The Doppler-shifted peak from the decay of 1s2p1/2 3P0 → 1s2s 3S1 → 1s 1S0 is at 77.8 keV. Cascades from higher excited states would produce a peak at 81.4 keV. Peaks at 72.8 keV and 75.0 keV are Pb Kα₂ and Pb Kα₁ x rays, and those at 84.5 keV - 87.3 keV are Pb Kβ₁₋₂ x rays. Peaks at 56.3 keV and 57.5 keV are Ta Kα₂ and Ta Kα₁ x rays, and those at 65.2 and 67.0 keV are Ta Kβ₁ and Kβ₂ x rays. Peaks at 45.2 keV - 46.0 keV are Dy Kα₂₋₁ x rays. Pb and Dy are used for shielding and Ta is used for x-ray detector collimators. The peak at 21.2 keV is scattered Pd Kα₁ radiation from the Pd foil. Background is caused by bremsstrahlung of the foil electrons in the field of the uranium projectile; by bremsstrahlung of electrons scattered in and ejected from the Pd foil; and by fast nuclear fragments colliding with the Ge in the x-ray detector. Other sources of background may also exist. To reduce background we restricted the scatter of x rays into the detector, held electrons ejected from the foil away from the detector with a magnetic field, and vetoed background from nuclear fragments using scintillators.

Fig. 3 - Linear plots of the intensity of x rays from the transitions (a) 1s2s 3S₁ → 1s 1S₀, and (b) 1s2p3/2 3P₂ → 1s 1S₀, as a function of distance downstream from the Pd foil. Each point is the sum of the spectra from two x-ray detectors. Error bars are one standard deviation statistical errors. The horizontal line in (b) is the fit of a hypothetical constant count rate to the data. The count rate is consistent with zero and sets a limit to the contamination of our signal by cascade feeding.
Heliumlike Uranium

Fig. 1
Fig. 3
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.