Seed-storage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat

Permalink
https://escholarship.org/uc/item/9tx6w9zv

Journal
Theoretical and Applied Genetics, 95(7)

ISSN
0040-5752

Authors
Dubcovsky, J
Echaide, M
Giancola, S
et al.

Publication Date
1997-11-01

DOI
10.1007/s001220050678

Peer reviewed
J. Dubcovsky · M. Echaide · S. Giancola
M. Rousset · M. C. Luo · L. R. Joppa · J. Dvorak

Seed-storage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat

Received: 25 March 1997 / Accepted: 23 June 1997

Abstract Linkages between high- and low-molecular-weight (M₃) glutenin, gliadin and triticin loci in diploid, tetraploid and hexaploid wheats were studied by hybridization of restriction fragments with DNA clones and by SDS-PAGE. In tetraploid and hexaploid wheat, DNA fragments hybridizing with a low-M₃ glutenin clone were mapped at the XGlu-3 locus in the distal region of the maps of chromosome arms 1AS, 1BS, and 1DS. A second locus, designated XGlu-B₂, was detected in the middle of the map of chromosome arm 1BS completely linked to the XGli-B₃ gliadin locus. The restriction fragments mapped at this locus were shown to co-segregate with B subunits of low-M₃ glutenins in SDS-PAGE in tetraploid wheat, indicating that XGlu-B₂ is an active low-M₃ glutenin locus. A new locus hybridizing with the low-M₃ clone was mapped on the long arm of chromosome 7A in diploid wheat. No glutenin protein was found to co-segregate with this new locus. Triticin loci were mapped on chromosome arms 1AS, 1BS, and 1DS. A failure to detect triticin proteins co-segregating with DNA fragments mapped at XTri-B1 locus suggests that this locus is not active. No evidence was found for the existence of Gli-A₄, and it is concluded that this locus is probably synonymous with Gli-A₃. Recombination was observed within the multigene gliadin family mapped at XGli-A1 (1.2 cM). Although these closely linked loci may correspond to the previously named Gli-A1 and Gli-A₅ loci, they were temporarily designated XGli-A1.1 and XGli-A1.2 until orthology with Gli-A1 and Gli-A₅ is established.

Key words Triticum · Storage-protein loci · Glutenin · Gliadin · Triticin

Introduction

The potential of wheat flour for breadmaking depends to a large extent on the quantity and quality of gluten (for a recent review see Weegels et al. 1996). Gluten is a protein complex composed of monomeric gliadins and polymeric glutenins. Glutenin polypeptides form high-molecular-weight polymers via intermolecular disulfide bonds. These polymers facilitate retention of gas by the dough; therefore, their characteristics are critical for the properties of dough and the quality of bread. Gliadins form only intramolecular disulfide bonds and do not aggregate. They are, therefore, less critical for the breadmaking potential of wheat flour.

The gliadins are separated into four groups, denoted as α-, β-, γ-, and ω-gliadins, when fractionated by polyacrylamide-gel electrophoresis at low pH. The α- and β-gliadins are similar to each other structurally and are referred to as α-type gliadins. They exhibit some differences from the γ-gliadins that are referred to as γ-type gliadins (Tatham et al. 1990). The α- and γ-type gliadins [and also the low-molecular-weight (M₃) glutenins] contain appreciable levels of sulphur amino acids. The ω-gliadins, in contrast, are deficient, and in some cases completely lacking, in sulphur amino acids (Tatham et al. 1990). They have the highest M₃, and are the least charged.
The subunits of glutenin are categorized according to their M₃ into high- and low-M₃ classes (Holt et al. 1981; Jackson et al. 1983; Payne et al. 1984). The low-M₃ glutenin subunits have been subdivided into three groups, designated B, C, and D. A was reserved for the high-M₃ glutenin subunits (Payne and Corfield 1979). The B subunits have an M₃ ranging from 42 to 51 kDa and constitute a major group. The C subunits have an M₃ ranging from 30 to 40 kDa and constitute a minor group (Payne and Corfield 1979; Pogna et al. 1994). The B and C low-M₃ glutenin subunits are distantly related to γ-gliadins (Colot et al. 1989; Cassidy and Dvorak 1991). Another minor group are the D subunits which are highly acidic and are related to ω-gliadins (Jackson et al. 1983; Masi et al. 1993).

The high-M₃ glutenin subunits are encoded at the Glu-1 loci on the long arms of wheat chromosomes 1A, 1B, and 1D. The low-M₃, B and C glutenin subunits are encoded at the Glu-3 multigene loci tightly linked to the Gli-1 multigene loci. The Gli-1 multigene loci encode γ- and ω-gliadins and some β-gliadins at the distal ends of the short arms of chromosomes 1A, 1B and 1D (Jackson et al. 1983; Singh and Shepherd 1988; Pogna et al. 1990; Ruiz and Carrillo 1993; Dubcovsky and Dvorak 1995; Dubcovsky et al. 1995; Gale et al. 1995). Additional genes encoding ω-gliadins have been located at the Gli-3 loci. These loci were originally designated Gld-B6 (Galili and Feldman 1984) and Gld-2 (Sobko 1984) and have been mapped in the middle of the maps of the short arms of chromosomes 1A and 1B (Payne et al. 1988; Ruiz and Carrillo 1993; Dubcovsky and Dvorak 1995; Dubcovsky et al. 1995; Van Deunze et al. 1995). Most β- and all ω-gliadins are encoded at multigene loci on the short arms of chromosomes 6A, 6B, and 6D (Wrigley and Shepherd 1973).

The D subunits of low-M₃ glutenin appear in the glutenin (aggregated) fraction in gel-filtration chromatography but are non-covalently bound to glutenin (Payne et al. 1988). Genes encoding D subunits are completely linked to the Gli-D1 locus on chromosome 1D (Payne et al. 1986; Pogna et al. 1995). However, on chromosome 1B they are at a separate locus, which was originally designated as Glu-B2. This locus was mapped between Glu-B1 and Gli-B1 (Jackson et al. 1985). Genes at this locus are completely linked to the ω-gliadin genes mapped at the locus and originally designated as Gld-B6 (Galili and Feldman 1984). Because of the close functional and linkage relationships between ω-gliadins and D subunits encoded at the Gld-B6 and Glu-B2 loci, Payne et al. (1988) concluded that Gld-B6 and Glu-B2 are synonymous and re-designated the locus as Gli-B3. The Gld-2 locus on chromosome 1A (Sobko 1984) was assumed to be orthologous to this locus and was re-designated as Gli-A3 (Payne et al. 1988).

A gene encoding a low-M₃ glutenin of the B class that appears to have aggregating properties was recently found to be closely linked to the gliadin genes at the Gli-B3 locus (Ruiz and Carrillo 1993; Liu 1995; Liu and Shepherd 1995). The locus was designated Glu-B2 (Liu 1995), a name used before for the locus encoding the D glutenin subunits (Jackson et al. 1985) but abandoned for reasons explained above. Since genes encoding low-M₃ glutenin subunits are related to gliadins, a gliadin may mimic a low-M₃ glutenin subunit if it acquires an additional cystein enabling it to aggregate (Tao and Kasarda 1989; Lew et al. 1992). Since gliadin subunits make up to 20% of the low-M₃ glutenin (Lew et al. 1992), it cannot be excluded on the basis of existing evidence that the low-M₃ glutenin gene mapped at the Glu-B2 locus by Liu (1995) was a mutant gliadin.

Two additional low-molecular-weight subunits of glutenin with relative molecular masses of 30 kDa and 32 kDa were reported on chromosomes 1D (Glu-D4) and 7D (Glu-D5) respectively (Sreeramulu and Singh 1997). Although both subunits appear in the aggregated fraction in alkylated glutenin preparations, the N-terminal amino-acid sequence of the subunit from chromosome 7D is related to x-type gliadins (Lew et al. 1992; Sreeramulu and Singh 1997).

Low-M₃ glutenin genes that have been cloned are sufficiently different at the nucleotide sequence level from the gliadin genes so that they do not hybridize with them (Cassidy and Dvorak 1991; Dubcovsky and Dvorak 1995; Dubcovsky et al. 1995). Hence, mapping of DNA restriction fragments hybridizing with cloned gliadin or low-M₃ glutenin genes provides a convenient strategy to ascertain whether a mapped storage protein was coded by a glutenin or gliadin gene. We report here the linkage relationships among genes encoding low-M₃ glutenin and gliadin proteins in diploid, tetraploid and hexaploid wheats, using DNA hybridization. DNA markers for other storage proteins, such as high-M₃ glutelins (Anderson et al. 1989) and triticin (Singh et al. 1997) were also included in this study.

Material and methods

Mapping populations

Diploid wheat

The genetic maps of diploid wheat, T. monococcum L., were based on two populations. One population comprised 74 F₂/F₃ families from the cross cultivated T. monococcum ssp. monococcum DV92 × T. monococcum ssp. aegilopoides G3116 from Lebanon. The other population comprised 76 F₂/F₃ families from the cross T. monococcum ssp. aegilopoides G2528 × T. monococcum ssp. aegilopoides G1777. Linkage maps of chromosome 1A* from these crosses have already been reported (Dubcovsky et al. 1995, 1996).

Tetraploid wheat

Chromosome 1A of T. turgidum L. was mapped using 85 recombinant substitution lines (RSLs) derived from a cross between
Hexaploid wheat

A chromosome 1B map was constructed using 74 disomic RSLs obtained from a cross between *T. aestivum* cv Chinese Spring double ditelosomic 1B and a Chinese Spring disomic substitution line in which chromosome 1B was replaced by a homologous chromosome pair of cv Cheyenne (Morriss et al. 1966). This line will henceforth be designated as DSCn1B. The map of chromosome 1D was based on 87 RSLs from a cross between Chinese Spring double ditelosomic 1D and a disomic substitution line in which Chinese Spring chromosome 1D was replaced by *T. tauschii* chromosome 1D from the synthetic amphihexaploid RL5405 (Jones et al. 1991). The disomic substitution line was designated DSTdic1D.

Other genetic stocks

The presence of low-M, glutenin and gliadin genes on chromosomes of homoeologous group 7 was investigated in the following stocks: (1) Chinese Spring ditelosomics 7AS, 7BS and 7DS (Sears and Sears 1979); (2) disomic substitution lines with *Lophopyrum elongatum* (Host) Löve chromosome 7E individually substituted for Chinese Spring chromosomes 7A, 7B, and 7D (Dvorak 1980); and (3) a disomic addition line of chromosome 7H from *H. vulgare* L. in Chinese Spring (further DATH) (Islam et al. 1981).

Clones and mapping

Nuclear DNAs were isolated from leaves of single plants following the procedure of Dvorak (1988). Southern hybridization was performed as described earlier (Dubcovsky et al. 1994). After hybridization, the membranes were washed in 2 × sodium citrate buffer (SCC) at 65 °C for 30 min and 1 × SCC at 65 °C for 30 min. The final wash was 0.2 × SCC at 65 °C for 30 min for wheat clones and 0.5 × SCC at 65 °C for 30 min for heterologous clones. The following clones were used in the mapping of seed-storage-protein loci: hordein (γ-gliadin) clone pCP387 (Forde et al. 1985 a), α-gliadin clone pTU1 (D’Ovidio et al. 1992), high-M, glutenin clone pDY10A/KS- (Anderson et al. 1989), low-M, glutenin clone pTDUC1 (Cassidy and Dvorak 1991), and triticin clone Tri25-11 (Singh et al. 1993). Probes used for the mapping of the remaining loci were as described by Dubcovsky et al. (1996).

Maps were constructed with the computer program Mapmaker/EXP 3.0 (Lander et al. 1987; Lincoln et al. 1992) using the Kosambi mapping function (Kosambi 1943). Multipoint analysis was on individual linkage groups employing a LOD threshold of two. Preferred orders were checked by the “RIPPLE” command with a window size of 5 and a LOD threshold of 2. Markers with LOD < 2 were placed in the preferred locations and are indicated by non-italicized parentheses in Fig. 1. The goodness-of-fit of the segregation of each pair of alleles was tested with χ² tests. Segregation of the double ditelosomic and bibrachial chromosome states was used to map the centromeres in *T. aestivum*. In *T. turgidum*, the positions of the centromeres were inferred from the position of markers flanking the centromere in *T. aestivum* (Dubcovsky et al. 1995). The significance of the difference in the lengths of a specific interval between maps was tested by the z-test. To perform these tests, interval lengths in cM were converted back into percentage of recombination using the Kosambi function, and variances of the estimates of percentages of recombination were calculated according to Allard (1956).

Most chromosomal loci of seed-storage-protein genes mapped here are designated by symbols proposed by other workers. For ease of reading, the designations of orthologous loci on wheat homoeologous chromosomes (e.g., Glu-A1, Glu-B1, Glu-D1) are used only when the context does not indicate which of the orthologous loci is being considered.

Protein analyses

Glutenins were extracted from single seeds using a sequential extraction procedure (Singh et al. 1991b). Briefly, glutenins were extracted twice (30 min) with a 50% (v/v) propan-1-ol solution and discarded. Glutenins were then extracted from the residue, alkylated, and fractionated by one-dimensional SDS-PAGE using 10–12% (w/v) polyacrylamide gels. The protein extraction, the alkylation of SH groups, and the treatment of propanol extracts with SDS sample buffer were all carried out at 65 °C (Singh et al. 1991b). Triticins were extracted according to Singh et al. (1991a) and electrophoretically fractionated in 10% (w/v) polyacrylamide gels.

Results

Chromosome 1A

A map of chromosome 1A of *T. turgidum* employing 21 molecular markers and one morphological marker, black glume (By), was 140 cM long (Fig. 1). The centromere was inferred to be within the 3.6-cM *Xbcd446*-XEm interval. The interval centromere-XGlu1 on the long arm was 36.2–39.8 cM long, which is significantly longer (z-test, P < 0.05) than the same interval on the maps of chromosomes 1B (19.9 and 21.7 cM), 1D (17.9 cM) (Fig. 1), and of previously published maps of chromosome 1A of *T. aestivum* (18.2–22.2 cM) (Dubcovsky et al. 1995) and 1Am of *T. monococcum* (5.4 cM and 18.5 cM) (Dubcovsky et al. 1995, 1996). Intervals distal to XGlu1, XGlu1-XAdh3 and XAdh3-Xcnwg710 on the map of chromosome 1A of *T. turgidum* were greatly compressed (P < 0.01) relative to the corresponding intervals on the *T. turgidum* 1B map (Fig. 1), a *T. aestivum* 1A map (Dubcovsky et al. 1995), and two *T. monococcum* 1Am maps (Dubcovsky et al. 1995, 1996).

Four seed-storage-protein loci were mapped on the short arm. The most proximal was triticin locus *XTri*, which was 6.0–9.6 cM from the centromere, and the most distal was the gliadin locus *XGli*–1, which was 40.4–45.2 cM from the centromere (Fig. 1). A crossover was detected within the *XGli*–1 locus and the two resulting loci were temporarily designated *XGli*-1.1 and *XGli*-1.2 (Fig. 1). Another gliadin locus was detected in the middle of the map of the short arm
completely linked to the XChs3 locus. We assume that this is XGli3. DNA fragments hybridizing with the low-Mₚ glutenin locus Gli3 was completely linked to Gli1 on the DV92 × G3116 map and 0.7 cM proximal to it on the G2528 × G1777 map.

Chromosome 1B

Two maps of chromosome 1B were constructed (Fig. 1). The T. aestivum map comprised 19 molecular markers and the centromere, and was 120-cM long. The T. turgidum map comprised 29 molecular markers and one morphological marker, waxy spike, and was 91-cM long. The waxy phenotype is dominant over waxy. The dominant allele was contributed by the T. dicoccoides parent, which has spikes devoid of waxy bloom. Loci controlling waxy bloom that have been mapped in wheat and related species are indicated by the centromeric state vs bibrachial state) whereas on the XGli3 locus was mapped to chromosome 1A (Dubcovsky et al. 1995). The consistent position of the XGli3 locus relative to the XChs3 locus on all maps leaves little doubt that loci mapped as Gli3 on 1A, 1A, and 1B (Fig. 1) are orthologous. The low-Mₚ glutenin locus Glu3 was completely linked to Gli1 on the DV92 × G3116 map and 0.7 cM proximal to it on the G2528 × G1777 map.

Chromosome 1B

Two maps of chromosome 1B were constructed (Fig. 1). The T. aestivum map comprised 19 molecular markers and the centromere, and was 120-cM long. The T. turgidum map comprised 29 molecular markers and one morphological marker, waxy spike, and was 91-cM long. The waxy phenotype is dominant over waxy. The dominant allele was contributed by the T. dicoccoides parent, which has spikes devoid of waxy bloom. Loci controlling waxy bloom that have been mapped in wheat and related species are indicated by the centromeric state vs bibrachial state) whereas on the XGli3 locus was mapped to chromosome 1A (Dubcovsky et al. 1995). The consistent position of the XGli3 locus relative to the XChs3 locus on all maps leaves little doubt that loci mapped as Gli3 on 1A, 1A, and 1B (Fig. 1) are orthologous. The low-Mₚ glutenin locus Glu3 was completely linked to Gli1 on the DV92 × G3116 map and 0.7 cM proximal to it on the G2528 × G1777 map.

Chromosome 1B

Two maps of chromosome 1B were constructed (Fig. 1). The T. aestivum map comprised 19 molecular markers and the centromere, and was 120-cM long. The T. turgidum map comprised 29 molecular markers and one morphological marker, waxy spike, and was 91-cM long. The waxy phenotype is dominant over waxy. The dominant allele was contributed by the T. dicoccoides parent, which has spikes devoid of waxy bloom. Loci controlling waxy bloom that have been mapped in wheat and related species are indicated by the centromeric state vs bibrachial state) whereas on the XGli3 locus was mapped to chromosome 1A (Dubcovsky et al. 1995). The consistent position of the XGli3 locus relative to the XChs3 locus on all maps leaves little doubt that loci mapped as Gli3 on 1A, 1A, and 1B (Fig. 1) are orthologous. The low-Mₚ glutenin locus Glu3 was completely linked to Gli1 on the DV92 × G3116 map and 0.7 cM proximal to it on the G2528 × G1777 map.
that of the long arm in *T. aestivum* (81.3 cM). However, the maps of the short arm were of greatly different lengths. The *T. turdium* short-arm map was 13.0 cM long but that of *T. aestivum* was 38.9 cM long. It appears that it was the *T. turdium* map that was anomalous since this map was also significantly shorter than the maps of chromosome arms 1AS and 1DS. The positions of common markers on the two 1BS maps, *XGl*-1, *XGlu*-3, *Xmwwg645*·1, and *XGlu*-2, suggest that the 1BS map was reduced in length due to a reduced crossover frequency in the entire *T. turdium* 1BS linkage group, rather than in a specific region of it, as was the case in the long arm of chromosome 1A.

The high-M₃ glutelin clone pDY10A/KS hybridized with restriction fragments that mapped 21.7 cM and 19.9 cM from the centromere on the long arm of chromosome 1B in *T. turdium* and *T. aestivum*, respectively (Fig. 1). The triticin locus *XTri* was completely linked to the centromere and the *X Nor* locus in *T. turdium*. Triticins from seeds of RSLs of chromosome 1B with different *XTri* RFLP alleles and from Langdon DS1D(1A) and DS1D(1B) were analyzed by SDS-PAGE. Only the triticin band from chromosome 1A, identified using DS1D(1A), was observed in the RSLs of chromosome 1B. This suggests that the *XTri*-B1 locus is inactive. The *XTri* locus was not mapped in *T. aestivum* due to the lack of RFLPs.

DNA fragments hybridizing with gliadin clone pCP387 were mapped at two loci on the short arm of the *T. turdium* chromosome (Fig. 1). The distal locus was *XGli*-1. The proximal locus was completely linked to *XChs*·3, like the *XGli*-3 locus on chromosome 1A. This indicates that the proximal gliadin loci on 1A and 1B are orthologous. The *Gli*-3 locus was not mapped on the *T. aestivum* chromosome since no DNA fragment polymorphic between Chinese Spring and Cheyenne DNAs was found in this region of the map.

Low-M₃ glutelin clone pTdUDC1 hybridized with DNA fragments mapping at two loci (Fig. 2, *BglII*). One locus, *Glu*-3, was 1.1 cM proximal to *XGli*-1 in *T. turdium* and 4.5 cM in *T. aestivum* (Fig. 1). The other locus, *Glu*-2, was located in the middle of the maps of the short arm in both species. The *XGlu*-2 locus was completely linked to *XGli*-3 in *T. turdium* and to *Xbcd249* in *T. aestivum* (Fig. 1). Unfortunately, the linkage relationship between *XGlu*-2 and *XGli*-3 could not be investigated in *T. aestivum* because no restriction fragment for the *XGli*-3 locus was polymorphic in the *T. aestivum* mapping population. A Southern blot of *T. turdium* RSL DNA digested with *Xba*I was sequentially hybridized with gliadin clone pCP387 and LMW clone pTdUDC1. There was no fragment common to the two profiles (Fig. 2, *Xba*I). The same result was obtained with *BglII*-digested DNAs (Fig. 2).

Five *T. turdium* RSLs recombined between *XGlu*-2 and *XGlu*-3 and five RSLs with the parental genotypes were analyzed by SDS-PAGE (Fig. 3). Six low-M₃ glutelin subunits of the B type (indicated by arrowheads in Fig. 3) co-segregated with DNA fragments from the Langdon or *T. turdium* ssp. *dicoccoides* *XGlu*-3 alleles, and two B-type subunits (indicated by arrows in Fig. 3) co-segregated with DNA fragments from the Langdon or *T. turdium* ssp. *dicoccoides* *XGlu*-2 alleles (compare Figs. 2 and 3).

Chromosome 1D

The map of chromosome 1D involved 14 molecular markers, the centromere, and the stem rust-resistance locus *Sr33* (Jones et al. 1991). The total length of the map was 95 cM. Strong segregation distortion favoring Chinese Spring alleles was observed in the distal portion of the long arm. Only 10.6% (expected 50%) of *T. aestivum* alleles were detected at *XAgA*·7. The most distal loci *Xcd0393* and *Xw3241* could not be mapped because only a few of the RSLs carried *T. aestivum* alleles at these loci.

The high-M₃ glutelin locus was mapped 17.9 cM from the centromere on the long arm. This 1D interval was significantly shorter (*z*-test, *P* < 0.05) than the same interval on the map of chromosome 1A (Fig. 1) but did not significantly differ from the *XGlu*-1–centromere interval on either map of chromosome 1B.

The *XTri* locus was mapped 4.7 cM from the centromere on the short arm. The *XGli*-1 locus was 36 cM from the centromere. Only one RSL showed recombination between *XGli*-1 and *XGlu*-3, yielding a distance of 1.2 cM between the loci. No *XGli*-3 or *XGlu*-2 locus was detected on chromosome 1D.

Chromosome 7A

In DNAs of the DV92 × G3116 *T. monococcum* population digested with *DraI*, *EcoRI*, *SstI*, and *XbaI* and hybridized with pTdUDC1, a single restriction fragment was observed to segregate independently of DNA fragments mapping at the *XGlu*-3 locus. The G3116 parent contributed this restriction fragment. The fragment mapped on the long arm of chromosome 7A between markers *Xwg380* and *Xabq461* (Fig. 4). Cultivated *T. monococcum* DV92 had a null allele at this locus. In DNAs of the G2528 × G1777 *T. monococcum* population digested with *BglII*, pTdUDC1 hybridized with one G2528 and two G1777 restriction fragments that segregated independently of the DNA fragments mapping at the *XGlu*-3 locus (Fig. 5). The three fragments were mapped to chromosome 7A between RFLP markers *Xwg380* and *Xwg420* (Fig. 4). We
Fig. 2 Sequential hybridization of XbaI (upper two panels) and BglII (lower two panels)-digested DNAs with hordein clone pCP387 and low-M, glutenin clone pTDUCD1. Note that these clones hybridize with different restriction fragments in the same Southern-blots (BglII Southern-blot hybridized with hordein clones is included only for comparison). RSL24 and RSL30 have Langdon alleles at XGlu-B3 and XGlu-B2; RSL21, RSL34, and RSL65 have T. Turgidum ssp. dicoccoides alleles at XGlu-B3 and XGlu-B2; and RSL7, RSL43, RSL44, and RSL70 show recombination between XGlu-B3 and XGlu-B2.

designate this new low-M, glutenin locus Xucd1 (Low Mr-Glu).

To investigate the expression of this locus, SDS-PAGE profiles of the low-M, glutenin of the parental lines were compared with profiles of different F2 individuals recombinant for XGlu3 and Xucd1 (Low Mr-Glu). No protein co-segregating with Xucd1 (Low Mr-Glu) was found, suggesting that the Xucd1 (Low Mr-Glu) locus is not expressed.

Chromosome 7D

The presence of low-M, glutenin and gliadin genes on chromosomes of homoeologous group 7 was investigated in Chinese Spring ditelosomics, disomic substitutions and disomic addition lines (see Material and methods). Southern blots of DNAs of these genetic stocks digested with restriction enzymes BglII, Dral, EcoRI, and XbaI were hybridized with clones pTDUCD1, pCP387 and pTU1, and the hybridization profiles were compared with those of Chinese Spring (Fig. 5). No restriction fragment was absent from, or gained by, any of these stocks relative to Chinese Spring, suggesting that there is no low-M, glutenin or gliadin gene on chromosome 7 in the A, B, and D genomes of T. aestivum, the E genome of L. elongatum, or the H genome of H. vulgare (Fig. 5). However, since Southern-blot hybridization with the α-gliadin clone pTU1 produced a dark background, we cannot conclusively exclude the possibility of the presence of an α-type gliadin fragment on homoeologous group-7 chromosomes.
Fig. 3 One-dimensional SDS-PAGE (10% acrylamide). Glu-B3 low-M\(_3\) glutenin subunits are indicated by arrowheads and Glu-B2 low-M\(_3\) glutenin subunits by arrows. Alleles detected at XGlu-B3 and XGlu-B2 by DNA hybridization are indicated by L (Langdon) and D (T. turgidum ssp. dicoccoides).

Fig. 4 Linkage maps of T. monococcum chromosome 7A\(^{\text{a}}\). New low-M\(_3\) glutenin locus is indicated in bold. Distances are in cM and arrows indicate centromeres. One and two asterisks indicate segregation distortions at \(P < 0.05\) and \(P < 0.01\) levels respectively (\(\chi^2\) test).

Discussion

Low-M\(_3\) glutenins

Ruiz and Carrillo (1993) mapped a low-M\(_3\) glutenin subunit, LMW9, at the Gli-3 locus in the B genome (Gli-B3) of T. turgidum ssp. durum cv Mexicali. This subunit had an electrophoretic mobility characteristic of the B subunits. Liu (1995) found a similar subunit in durum cv Edmore. He designated the locus at which the subunit was encoded as Glu-2. Although Liu (1995) demonstrated that the subunit was linked to glutenin by disulphide bonds, these observations did not rule out the possibility that the subunit is a mutant gliadin that acquired an odd cysteine that facilitates its covalent bonding to glutenin by means of an intermolecular disulphide bond (Lew et al. 1992). This possibility was however, ruled out in the present study. Low-M\(_3\) glutenin clone pTdUCD1 has less than 70% homology with the gliadin genes at the nucleotide-sequence level and does not hybridize with them (Cassidy and Dvorak 1991). Restriction fragments that hybridized with the clone and mapped at the XGlu-2 locus did not hybridize with the gliadin clone while those that mapped at the XGli-B3 locus and hybridized with the gliadin clone did not hybridize with the low-M\(_3\) glutenin clone. This showed that the aggregating polypeptide mapped at the Glu-2 locus is indeed a low-M\(_3\) glutenin subunit and not a mutated gliadin. In view of the greatly reduced level of recombination shown by the short arm of the T. turgidum chromosome, the lack of recombination between the XGlu-2 and XGli-3 loci on 1B of T. turgidum has little weight for deciding whether one or two loci are involved. In this study, it was not possible by SDS-PAGE to find a protein...
subunit that co-segregates with the restriction fragments mapped at XGlu-B2 in the hexaploid mapping population.

The low-M, glutenin subunit mapped here and by Ruiz and Carrillo (1993) and Liu (1995) is a B-subunit and not the D-subunit originally mapped at Glu-2 in the B genome by Jackson et al. (1985). In contrast to the B-subunits of low-M, glutenin, the D-subunits are related to \(\omega \)-gliadins. When the D-subunits were found to be at the Glu-3 and Gli-1 loci in the B and D genomes, respectively, the Glu-2 name was abandoned (Payne et al. 1988). Liu (1995) re-used the Glu-2 designation for the locus encoding the B-subunit in the middle of the short arm of chromosome 1B.

Another new low-M, glutenin locus, designated Xucd1 (Low-M, Glu), was detected with clone pTDUCD1 on the long arm of chromosome 7A\(^{\text{M}}\) in \(T. \) monococcum ssp. aegilopoides. The absence of this locus on \(T. \) monococcum ssp. monococcum chromosome 7A\(^{\text{M}}\), and on chromosomes from homoeologous group 7 in other Triticeae genomes, suggests that this duplication is recent. Co-linearity between chromosome 7A\(^{\text{M}}\) and barley chromosome 7H for markers flanking the Xucd1 (Low-M, Glu) locus, Xabc455, XAmy2, Xpsr129, Xabc305, Xabq461, Xwq420 and Xmwa2062 (Dubcovsky et al. 1996) indicates that the Xucd1 (Low-M, Glu) locus does not owe its origin to a translocation or a duplication of a large segment of chromosome 1A\(^{\text{M}}\) in chromosome 7A\(^{\text{M}}\). Synthesis of the prolamin polypeptides is endosperm-specific (Forde et al. 1985 b; Colot et al. 1987) and consequently it is unlikely that a low-M, glutenin mRNA can be reverse transcribed and integrated as a processed pseudogene in the germ line. Positional changes of multigene loci without alteration of chromosome co-linearity (gene nomadism) were also reported for the 18S-5.8S-26S and 5S rRNA multigene families (Dubcovsky and Dvorak 1995; Dubcovsky et al. 1996). Although the exact nature of this process is unknown, intrachromosomal recombination between closely linked DNA direct repeats and excision of a circular DNA molecule containing the intervening sequences can provide a possible explanation (Peterhans et al. 1990; Gal et al. 1991). Intrachromosomal recombination between direct repeats occurs regularly in plants (Gal et al. 1991), and in one case the ‘popped out’ DNA sequence was found integrated elsewhere in the genome (Peterhans et al. 1990).

The low-M, glutenin locus Xucd1 (Low-M, Glu) detected on chromosome 7A\(^{\text{M}}\) of \(T. \) monococcum is probably not orthologous to the Glu-D5 locus reported on chromosome 7D by Sreeramulu and Singh (1997). No DNA fragment was detected on chromosome 7D using a low-M, glutenin clone that strongly hybridized with the 7A\(^{\text{M}}\) L DNA fragments in the same Southern blot (Fig. 5). Moreover, the VXVPV N-terminal amino-acid sequence of the subunit mapped by Sreeramulu and Singh (1997) is characteristic of \(\gamma \)-type gliadins and not of low-M, glutenins. Payne et al. (1987) and Tercero et al. (1991) reported four \(\gamma \)-type hordeins on homoeologous group 7 of \(Hordeum chilense \). Clearly, determination of the position of the Glu-D5 and Hor-Hch3 in relation to molecular markers that have been mapped on chromosome 7A\(^{\text{M}}\) should receive high priority in order to ascertain the orthology between these two loci and Xucd1 (Low-M, Glu).

Gliadins

In homoeologous group 1, the major component of \(\gamma \)- and \(\omega \)-gliadins is encoded at the Gli-1 loci at the distal ends of the maps of the 1AS, 1BS, and 1DS chromosome arms. In the A and B genomes, another locus (Gli-3) encoding gliadins is halfway between Gli-1 and the centromere. In addition to these well-documented loci, another locus proximal to Gli-1 has been claimed to exist on arm 1AS. Metakovsky et al. (1986) mapped this putative locus 13% recombination units proximal to Gli-1 while Redaelli et al. (1992) mapped it 10 cM proximal to Gli-1 and named it Gli-4. However, neither study provided evidence that this locus is not Gli-3. The rationale for assigning a new symbol to the locus was its shorter distance from Gli-1. The Gli-3 locus had been reported to be 25–36% proximal to Gli-1 (Galili and Feldman 1984; Payne et al. 1988). It is nevertheless possible that Gli-4 is actually the same locus as Gli-3 and that the low recombination with Gli-1 reflected heterozygosity for the distal 1AS/1DS translocation that differentiated the parents of the Redaelli et al. (1992) mapping population. Heterozygosity for an analogous terminal 1AS/1DS homoeologous translocation was observed to reduce recombination in the proximal, homologous region by 62% (Dubcovsky et al. 1995). Moreover, shorter distances between Gli-3 and Gli-1 ranging from 13 cm to 27 cm were reported recently (Dubcovsky et al. 1995, 1996) and those ranging from 7 to 22 cm were observed here. Since none of the five 1A or 1A\(^{\text{M}}\) chromosomes for which RFLP maps have been constructed showed simultaneously the presence of the Gli-3 and Gli-4 loci, it is prudent to consider Gli-4 actually to be Gli-3 until conclusive evidence for the existence of Gli-4 is obtained.

The Gli-1 loci are complex and include a large number of genes. Occasional recombination within these clusters has been reported for hexaploid wheat chromosomes 1A (Metakovsky et al. 1986; Felix et al. 1996), 1B (Pogna et al. 1993, 1995), and 1D (Metakovsky and Sozinov 1987; Metakovsky 1990). Recombination within the XGli-1 locus on chromosome 1A of tetraploid \(T. \) turgidum was observed here. Recombination within the Gli-1 loci raises concerns as to the validity of assigning additional locus designations to genes tightly linked to Gli-1. A \(\omega \)-gliadin locus 1.5–1.8 cm distal to the genes in the Gli-B1 locus was recently designated Gli-B3 (Pogna et al. 1993). The same authors speculated that crossovers within Gli-1 on chromosomes 1A
XGli and Gli level in this cross, the two products of a crossover in the true, and since gliadins were not analyzed at the protein very difficult to establish if the former assumption is and not at various sites within the cluster. Since it is valid only if crossovers within the cluster of gliadin genes always occur between the same groups of genes and not at various sites within the cluster. Since it is very difficult to establish if the former assumption is true, and since gliadins were not analyzed at the protein level in this cross, the two products of a crossover in the Gli-A1 locus were temporarily designated XGli-A1.1 and XGli-A1.2 until orthology with Gli-A1 and Gli-A5 is established.

Triticin

Triticins are storage proteins synthesized during seed development and deposited in the protein bodies of the wheat endosperm (Singh and Shepherd 1985b). The amino-acid sequence of triticin shows strong homology with the legumin-like proteins of oats (12S globulin), and rice (glutelin), and the legumin proteins of legume seeds (Singh et al. 1993). Synteny mapping by hybridization of the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic- (Singh et al. 1993). Synteny mapping by hybridization of rice (glutelin), and the legumin-like proteins of oats (12S amino-acid sequence of triticin shows strong homology with the legumin-like proteins of oats (12S globulin), and rice (glutelin), and the legumin proteins of legume seeds (Singh and Shepherd 1985b). The amino-acid sequence of triticin shows strong homology with the legumin-like proteins of oats (12S globulin), and rice (glutelin), and the legumin proteins of legume seeds (Singh et al. 1993). Synteny mapping by hybridization of the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with ditelocentric and nullisomic-tetrasomic Chinese Spring group-1 aneuploids showed that triticin genes are located on chromosome arms 1AS, 1BS, and 1DS. The intensity of the bands in euploid tetrasomic Chinese Spring group-1 aneuploids showed the triticin cDNA clone with diteloe...
(T. turgidum × T. tauschii) × T. aestivum cv Chinese Spring (Gale et al. 1995). However, in a single-seed-descent mapping population from a cross involving a different synthetic wheat (T. turgidum cv Altar 84 × T. tauschii) no reduction in recombination in 1BS was reported (Van Deynze et al. 1995). It is likely that this difference reflected the nature of the mapping populations (F2/F3 vs single-seed descent) since there is no reason to believe that the two pairs of parents differed in the level of polymorphism.

The drastic reduction in genetic length of the map of chromosome arm 1BS was not observed in the map of chromosome arm 1DS, although the latter was based on recombination between homologues which originated from different species (T. aestivum and T. tauschii). This is, however, in full agreement with the assumption that reduced crossover frequencies are related to the level of polymorphism between chromosomes. There was a very low level of RFLP between the T. aestivum chromosome 1D and the T. tauschii homologue (9% of polymorphic probe × enzyme combinations) compared with the level of polymorphism between T. turgidum ssp. durum chromosome 1B and the T. turgidum ssp. dicoccoides homologue (36% of polymorphic probe × enzyme combinations).

Although wide crosses are an appealing strategy to bypass the low level of RFLP among wheat cultivars, they can result in anomalies in recombination that may confound comparative mapping results. In addition to segregation distortion, an extreme form of which was observed here in the distal region of the 1DL arm of the T. aestivum and T. tauschii chromosome pair, one should expect large variation in genetic distances. It is therefore imperative that conclusions concerning the orthology of loci are based on their position relative to tightly linked flanking markers rather than simply on the strength of linkage, as has been pointed out for gladin loci above.

Acknowledgements This project is a contribution to the International Triticeae Mapping Initiative (ITMI). The authors express their gratitude to O. D. Anderson, R. D'Ovidio, M. D. Gale, B. S. Gill, A. Graner, A. Kleinhofs, E. Lagudah, P. Langridge, N. V. Reikhel, and M. E. Sorrells, for supplying clones. The authors also acknowledge financial support from USDA-NRI competitive grants program by grant No. 93-37100-9288.

References

Forde BG, Kreis M, Williamson MS, Fry RP, Pywell J, Shewry PR, Bunce N, Milfin BJ (1985 a) Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage-protein genes. EMBO J 4: 9–15

Jones SS, Dvorak J, Knott DR, Qualset CO (1991) Use of double-ditelosomic and normal chromosome 1D recombinant substitution lines to map Sr3S on chromosome arm 1DS in wheat. Genome 34: 505–508

Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30: 222–228

Snape JW, Flavell RB, O’Dell M, Hughes WG, Payne PI (1985) Intrachromosomal mapping of the nucleolar organizer region relative to three marker loci on chromosome 1B of wheat (Triticum aestivum) Theor Appl Genet 69: 263–270

