Lawrence Berkeley National Laboratory
Recent Work

Title
Initial Experimental Results on a Pulse Line Ion Accelerator

Permalink
https://escholarship.org/uc/item/9vd3b8sr

Authors
Roy, Prabir K.
Waldron, William L.
Yu, Simon S.
et al.

Publication Date
2006-07-21
Initial Experimental Results on a Pulse Line Ion Accelerator*

Prabir K. Roy, 1 William L. Waldron, 1 Simon S. Yu, 1 Joshua E. Coleman, 1 Enrique Henestroza, 1 David P. Grote, 2 David Baca, 1 Frank M. Bieniosek, 1 Richard J. Briggs, 3 Ronald C. Davidson, 4 Shmuel Eyelon, 1 Alex Friedman, 2 Wayne G. Greenway, 1 Matthaeus Leitner, 1 Grant B. Logan, 1 Louis L. Reginato, 1 and Peter A. Seidl 1

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
3 SAIC, Alamo, CA 94507, USA
4 Princeton Plasma Physics Laboratory, New Jersey 08543, USA

A new method of accelerating intense ion bunches has been investigated experimentally. The Pulse Line Ion Accelerator (PLIA) is best suited as an accelerator for intense bunches with pulse lengths of tens of centimeters. In a first beam dynamics validation experiment for the new PLIA concept, the predicted energy amplification and beam bunching were experimentally observed. Beam energy modulation of -80 keV to +150 keV was measured using a PLIA input voltage waveform of -21 kV to +12 kV. Ion pulses accelerated by 150 keV, and bunching by a factor of four were simultaneously achieved. The measured longitudinal phase space and current waveform of the accelerated beam are in good agreement with 3-D particle-in-cell simulations. Here we present initial experimental results of the PLIA as a proof-of-principle (POP) of the concept.

* This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231.