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GEOPHYSICS, VOL. 69, NO. 4 (JULY-AUGUST 2004); P. 917–924, 9 FIGS.
10.1190/1.1778235

Three-dimensional crustal structure in central Taiwan from gravity
inversion with a parallel genetic algorithm

Jian Zhang∗‡, Chi-Yuen Wang∗, Yaolin Shi‡, Yongen Cai∗∗, Wu-Cheng Chi∗,
Douglas Dreger∗, Win-Bin Cheng§, and Yen-Horng Yuan‡‡

ABSTRACT

The genetic algorithm method is combined with the
finite-element method for the first time as an alternative
method to invert gravity anomaly data for reconstructing
the 3D density structure in the subsurface. The method
provides a global search in the model space for all accept-
able models. The computational efficiency is significantly
improved by storing the coefficient matrix and using it
in all forward calculations, then by dividing the region of
interest into many subregions and applying parallel pro-
cessing to the subregions. Central Taiwan, a geologically
complex region, is used as an example to demonstrate
the utility of the method. A crustal block 120× 150 km2

in area and 34 km in thickness is represented by a finite-
element model of 76 500 cubic elements, each 2× 2× 2
km3 in size. An initial density model is reconstructed
from the regional 3D tomographic seismic velocity using
an empirical relation between velocity and density. The
difference between the calculated and the observed grav-
ity anomaly (i.e., the residual anomaly) shows an elon-
gated minimum of large magnitude that extends along
the axis of the Taiwan mountain belt. Among the inter-
pretive models tested, the best model shows a crustal
root extending to depths of 50 to 60 km beneath the axis
of the Western Central and Eastern Central Ranges with
a density contrast of 400 or 500 kg/m3 across the Moho.
Both predictions appear to be supported by independent
seismological and laboratory evidence.

INTRODUCTON

An important set of geophysical data for investigating the
subsurface density structure of an area is the gravity anomaly.
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The classical method in geophysical inversion that uses gra-
dient calculation (e.g., R. L. Parker, 1972; Oldenburg, 1974)
may yield results trapped in a local minimum and thus biased
by the assumed initial model (e.g., Camacho et al., 2002; Silva
et al., 2002). With the advent of fast computers, alternative
methods based upon a stochastic approach, such as the genetic
algorithm, have become popular.

The genetic algorithm is designed for solving a variety of
optimization problems. It is a stochastic search technique that
imposes the Darwinian principle of survival of the fittest in bi-
ological evolution on a population of individual models. The
main feature is to assign higher probabilities of reproduction
to the individual models with better fit to produce better so-
lutions. A large number of initial models are first generated.
Each model consists of a series of chromosomes, with each
chromosome representing a cell within the model mesh. When
prior information is not available, the starting population may
be randomly initialized. These models are evaluated accord-
ing to a set of given constraints and are allowed to evolve by
the principle of natural selection through many generations.
The method is robust and effective in finding optimal mod-
els that satisfy the given constraints, and it provides a global
search in the model space for all acceptable models (Goldberg
and Richardson, 1987; Goldberg, 1989; Shi, 1992; B. P. Parker,
1999). Furthermore, it may be adaptable to parallel processing
to increase computational efficiency.

Even with the power of today’s computers, the application of
the genetic algorithm to geophysical inversion in complex ge-
ologic regions is limited by available computer resources. Two
factors contribute to the genetic algorithm’s demand on com-
puter resources: (1) the large number of parameters needed
to maximize the resolution of the model and (2) the amount
of computation required in the forward calculation to evaluate
the objective function of each individual model. For complex
geologic regions, the required computer time in the forward
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computation may become so substantial to render the applica-
tion of the genetic algorithm impractical. Cai and Wang (per-
sonal communication, 2003) have used a new finite-element
approach to significantly improve the efficiency in the forward
computation. Here, we exploit these aspects of the genetic al-
gorithm with parallel processing in the gravity inversion of the
3D subsurface density structure, and we illustrate this method
by applying it to the study of the crust in central Taiwan.

METHOD

Forward calculation

In a Cartesian coordinate system, the general 3D expression
for calculating the gravity anomaly (along the z-axis) resulting
from subsurface anomalous masses is

1g(x, y, z) = G
∫∫∫

V
1ρ(ξ, η, ζ )

× (z− ς)
[(x − ξ)2 + (y− η)2 + (z− ζ )2]3/2

dξ dη dς, (1)

where G is the gravitational constant, V the subsurface region
of interest, 1ρ the anomalous density with respect to some
reference density (x, y, z) and (ξ, η, ζ )—the coordinates of the
field station and the anomalous density. Approximate expres-
sions for direct integration based on expression (1) have been
developed for 2D bodies (e.g., Talwani et al., 1959) and 3D bod-
ies in Cartesian coordinates (e.g., Blakely, 1995) and in spher-
ical coordinates (Johnson and Litehiser, 1972).

Alternatively, one may calculate the gravity anomaly by solv-
ing the following Poisson’s differential equation for the gravi-
tational potential φ with appropriate boundary conditions,

∇2φ = −4πG1ρ, (2)

and then applying the relation

1g(x, y, z) = −
(
∂φ

∂z

)
. (3)

In assigning the boundary conditions, one would ideally assign
φ= 0 at infinite distance. In numerical analysis, however, one
may approximate this condition by surrounding the source re-
gion with many empty layers (i.e., 1ρ= 0) and assigning φ= 0
on the outermost boundary of the empty layers.

Equation (2) has the same form as the differential equa-
tions in many field problems such as heat flow, diffusion, and
groundwater flow. Hence, many numerical techniques, such as
the finite-element method, may be used in gravity modeling
of subsurface density in regions with complex structures. The
finite-element method has been widely used in engineering
analyses and discussed in many textbooks (e.g., Zienkiewicz
and Taylor, 1989; Bathe, 1996). Briefly, the method begins with
the discretization of the region of study into small elements; the
continuum solution is then replaced by discrete and approxi-
mate solutions at the element nodes, i.e., φ1, φ2, . . . , φn, where
n is the total number of element nodes. The governing equa-
tion (2) may then be transformed to a set of linear algebraic
equations (Zienkiewicz and Taylor, 1988, p. 264):

K8+Q = 0, (4)

where

Φ = [φ1, φ2, . . . , φn]T , (5)

K =
m∑

e=1

∫
Ve

(∇N)T∇NdVe, (6)

Q = −4πG
m∑

e=1

∫
Ve

NT1ρ(x, y, z) dVe. (7)

Here, N is an interpolation vector (or the shape function in
finite-element terminology) of the element, which is a function
of position only; ∇ is the gradient operator vector; e denotes
the element number; m denotes the total number of elements;
Ve is the volume of the element e; and ρ(x, y, z) is the den-
sity distribution in the element, interpolated from the densi-
ties on the element nodes. Since the K matrix is a function of
the shape function and the finite-element grid, which do not
change throughout the gravity modeling, it can be computed
once, stored, and used in all forward computations. In essence,
the finite-element procedure reduces the second-order partial
differential equation (2) to a set of algebraic equations (4).
Solving equation (4) we get φi ; applying equation (3), we get
the gravity anomaly.

Inverse modeling with parallel genetic algorithm

At the start of the genetic algorithm cycle, random values are
assigned to the strings in all models of a generation. The models
evolve through three basic processes: reproduction, crossover,
and mutation. Models are selected according to their fitness,
evaluated with a misfit function discussed below. Selected
models are paired into parents and are allowed to generate
offsprings. Crossover involves the partial exchange of model
characteristics, and mutation involves the occasional random
alteration of the value at a string position. Both crossover and
mutation enrich the diversity in the genetic pool. In particu-
lar, mutation prevents early convergence by introducing new
genes into the population, essentially expanding the gene pool
and allowing other regions of the solution space to be explored.
Finally, the offspring are evaluated for their fitness. Once these
values have been assigned, the offspring are placed back into
the population, often replacing their parents, to create the next
generation of potential solutions. Once the new generation is
created, the genetic algorithm cycle is repeated. The process is
continued until convergence is achieved.

The rate of convergence in the genetic algorithm depends on
the population size in a generation and the rates of crossover
and mutation. The population size, crossover rate, and muta-
tion rate are problem dependent and may be varied according
to the performance of the genetic algorithm. Numerical exper-
iments by other authors (Goldberg, 1989; Shi, 1992; Parker,
1999) suggest that, for best results, the population size should
be between 32 and 128, the crossover rate between 0.8 and 1,
and the mutation rate between 0.001 and 0.02.

Several misfit functions may be used; each has some advan-
tages and some disadvantages (e.g., Hjelt, 1992). A widely used
function is the sum of the squares of the misfit (e.g., Mansanne
and Schoenauer, 2002), i.e.,

f =
n∑

i=1

(
1go

i −1gc
i

)2
, (8)
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where 1go
i and 1gc

i are, respectively, the observed and the
calculated gravity anomalies at the i th gravity station and n is
the total number of gravity stations. For this study we choose
to use the square root of this function, i.e.,

f ′ =
{ n∑

i=1

(
1go

i −1gc
i

)2
}1/2

. (9)

The relative fitness among the models in a given generation is
used as an index for assigning the relative chance of survival
among the models.

For geophysical problems with a very large number of pa-
rameters, we may divide the subsurface region into N subre-
gions and apply parallel processing to the subregions. To en-
sure a broad spectrum of solutions from the subregions, a loose
constraint may be used at this stage. The best models from the
subregions are then reassembled in a final search with a tighter
constraint. Numerical experiments show that the parallel pro-
cess so described improves the computational efficiency by a
factor of ∼N.

We carry out a numerical experiment to verify whether the
genetic algorithm procedure may effectively recover the sub-
surface masses from gravity anomaly data. We first form an ar-
bitrary mass in the subsurface and calculate its gravity anomaly;
we then use the calculated gravity anomaly as the synthetic data
in the genetic algorithm inversion to reconstruct the subsurface
mass. To this end, we build a finite-element grid to represent a
subsurface inverted pyramid of 21× 21 km2 in area and 12 km
in depth (Figure 1a). The grid has 5292 cubic finite-element
elements, each 1× 1× 1 km3 in size; a uniform density of 1000
kg/m3 is assigned to each element. The gravity anomaly cal-
culated from this mass is shown in Figure 1b and is taken as
the data in the inverse problem. In the genetic algorithm in-
version, we assume that the density contrast is known and that
the depth and the thickness of the layer in which the mass is
embedded are given. We start by randomly assigning a density
of either 0 or 1000 kg/m3 to the elements in the layer and use
a population size of 32, a crossover rate of 0.9, and a mutation
rate of 0.001.

The inverted mass body is shown in Figure 1c; the calculated
gravity for the inverted mass body is shown in Figure 1d. Com-
paring Figures 1a and 1c, we see that the genetic algorithm
inversion has effectively recovered the subsurface mass. The
difference between Figures 1a and 1c is given in Figure 1e; it
shows two small pieces of the original mass are missing from the
inverted mass. These missing pieces occur deep within the mass
where the resolving power of the gravity data is relatively low.
The difference between Figures 1b and 1d is given in Figure 1f,
which shows that the amplitude of the difference between the
calculated gravity of the inverted mass and the synthetic data
is about 1.5× 10−5 m/s2 (i.e., 1.5 mGal), or 2.5% of the ampli-
tude of the gravity in the synthetic data. We conclude that the
genetic algorithm inversion of gravity data may be an effective
means of finding the subsurface masses if correct specifications
are given on the density contrast between the mass and its sur-
roundings and on the depth of the layer in which the mass is
embedded.

APPLICATION TO CENTRAL TAIWAN

As an example, we apply the genetic algorithm gravity inver-
sion to central Taiwan, a geologically complex region. We first

summarize the relevant geologic and geophysical information.
From this information we construct an initial density model
and calculate its gravity anomaly. The differences between the
calculated and the observed anomalies are used in calculating
the misfit function (9), which in turn is used in the genetic al-
gorithm inversion. Finally, we present and discuss the results
of the inversion.

Geologic setting

Taiwan is a mountainous island that rises locally to∼4 km. It
was formed after the late Cenozoic, with the oblique collision
between the Luzon volcanic arc on the Philippine Sea plate and
the China continental margin (Teng, 1990). The location of the
collision has migrated from north to south (Suppe, 1987), with
the suture zone marked by the Longitudinal Valley (Figure 2).
The prevailing structural trend in Taiwan is that of an elon-
gated arc convex to the west. Several structural belts have been
differentiated. These are, from west to east, the coastal plain,
floored by a pre-Tertiary block-faulted basement and covered
by flat-lying Cenozoic sedimentary sequences (Teng 1990); the

Figure 1. (a) Finite-element grid for a subsurface region in
which a mass in the shape of an inverted pyramid is im-
plemented. The base of the pyramid, with a surface area of
5× 5 km2, is at a depth of 1 km, the height of the pyramid is
3 km, and the density of the pyramid is 1000 kg/m3. Density
elsewhere is zero. (b) Calculated gravity for the mass. This is
used as the synthetic data in the genetic algorithm inversion.
(c) Recovered mass from the genetic algorithm inversion of the
synthetic data. (d) Calculated gravity for the inverted mass. (e)
Difference between the synthetic mass in (a) and the inverted
mass in (c). (f) Difference between the synthetic data and the
calculated gravity for the inverted mass. Numbers on contours
are in units of 10−5 m/s2 (i.e., mGal).
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western foothills, consisting of a fold-and-thrust belt of sedi-
mentary rocks; the Western Central Range, consisting of slates;
the Eastern Central Range, pre-Tertiary schists and meta-
morphic limestone (Ho, 1988); and the Coastal Range along
the eastern margin of the island, representing the deformed
and uplifted Luzon arc (Ho, 1988). Northeast of Taiwan, the
Philippine Sea plate subducts northward beneath the Ryukyu
arc–trench system (Teng, 1990). South of Taiwan, the oceanic
crust of the South China Sea is subducting eastward beneath
the Philippine Sea plate at the Luzon arc (Angelier et al.,
1995). In this study we focus on the central section of Taiwan
(Figure 2) away from the subduction zones.

Geophysical constraints

Three-dimensional tomographic P-wave velocity structures
for Taiwan have been published by Rau and Wu (1995) and
Cheng (2000). Since the density and the seismic wave ve-
locity of crustal rocks are closely related (e.g., Birch, 1961;
Christensen and Mooney, 1995), it is reasonable to construct
an initial density model for the crust from the available seis-
mic velocity. In this study we use Cheng’s tomographic ve-
locity model because it was specifically designed for central
Taiwan. The model was based on a simultaneous inversion of
24 230 P-wave traveltimes from 2582 events, as recorded by the
Taiwan Central Weather Bureau’s seismic network. Applica-
tion of a checkerboard test (Humphreys and Clayton, 1988)
showed good resolution at a grid spacing of 10 km (Cheng,
2000).

This velocity model is converted to an initial density model
by using an empirical relationship between velocity and density.
The latter is obtained by fitting the experimental data presented
in Dobrin and Savit (1988) for both crystalline and sedimentary
rocks at Vp≤ 2 km/s:

ρ = 1.5325+ 0.3148Vp − 0.0384V2
p + 0.0032V3

p , (10)

where ρ is density in 10−3 kg/m3 and Vp is the P-wave velocity
in kilometers per second. Equation (10) is consistent with the

Figure 2. Location map of the study area (within the square box
marked over Taiwan). The numbered major structural units are
(1) coastal plain, (2) Western Foothills, and (3) Eastern and
Western Central Ranges. The eastern boundary of the ranges,
marked by a fault, is the longitudinal valley. The sliver east of
the longitudinal valley is the coastal range.

relation by Christensen and Mooney (1995) that is specific for
crystalline rocks, but equation (10) can also be applied to sedi-
mentary rocks, which are important for this study. The resulting
density model is given in Figure 3. Since Cheng’s velocity model
is restricted in the upper 34 km, the initial density model is also
restricted in the upper 34 km.

The published Bouguer gravity anomaly of Taiwan (Yen
et al., 1995) is used in the present genetic algorithm inver-
sion. The gravity data were based on more than 600 evenly
distributed measurements over the island, with an average dis-
tance of 7 km between the stations. Estimated error, includ-
ing instrumental drift, tidal disturbances, and points of gravity
measurements in the terrain corrections in mountainous areas,
is ±2.5× 10−5 m/s2 (i.e., 2.5 mGal) (Tsai, 1999). The determi-
nation of the regional trend in the gravity data is highly subjec-
tive and is a topic of current debate (e.g., Camacho et al., 2002).
Generally, the regional trend is given by the lower frequency
components in the gravity data and represents the deeper den-
sity effect. After filtering out the lower frequencies, the remain-
ing data represent the density in the crust. We experimented
with different polynomials and found that, even though the
magnitude of the anomaly changed with different polynomial
fits, the major character in the gravity anomaly remained un-
changed. In the study we used the simplest correction, i.e., re-
moval of the linear trend from the original data. The resulting
Bouguer gravity anomaly (Figure 4a) shows an elongated area
of minimum gravity that lies along the boundary between the
Western Central Range and the Western Foothills.

Next we remove the effect of the known structures from the
gravity anomaly. The contribution of the initial density model
to the gravity anomaly is calculated with the finite-element
method, as described earlier. We represent the crustal block
in central Taiwan by a finite-element mesh of 76 500 elements,
each 2× 2× 2 km3 in size. Since the average density does not
contribute to gravity anomaly, we subtract the average density
of each horizontal layer from the initial density model, leaving
only the density difference. The calculated gravity anomaly for
the density model is presented in Figure 4b. It shows negative

Figure 3. Initial density model converted from Cheng’s (2000)
tomographic seismic velocity with equation (6). Note the occur-
rence of relatively low-density sedimentary basins on the west
side of the island and the occurrence of relatively high-density
crust on the east.
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values on the western side of the island, reflecting the relatively
low density of the sedimentary rocks, and positive values on
the eastern side, reflecting the relatively higher density of the
metamorphic rocks and the crystalline basement.

Subtracting the contribution from the upper 34 km
(Figure 4b) from the gravity anomaly in Figure 4a, we have the
residual anomaly, as shown in Figure 4c. Subtracting the contri-
bution of the upper 34 km from the Bouguer gravity anomaly
shifts the location of the gravity minimum eastward, from the
boundary between the Western Central Range and the Western
Foothills (Figure 4a) to the axis of the Western Central Range
and the Eastern Central Range in the north (Figure 4c). The
most interesting feature in Figure 4c is an elongated arc of nega-
tive gravity anomaly that runs along the axis of the ranges. This
anomaly must be from an unknown structure not represented
in Cheng’s tomographic seismic velocity; it thus provides the
basic data for geophysical inversion.

GENETIC ALGORITHM INVERSION AND RESULTS

Because of the trade-off between density contrast and depth
in gravity modeling, an infinite number of models may satisfy
the gravity data. We use the misfit function in the model space

Figure 4. (a) Bouguer gravity anomaly of the study area, af-
ter removal of linear regional trends from the data (Yen et al.,
1995), overlaid on outlines of major structure units of Taiwan.
(b) Gravity anomaly calculated from density model in Fig-
ure 3. (c) Residual gravity anomaly, i.e., difference between
(a) and (b). (d) Same as (c), except a constant 65× 10−5 m/s2

(i.e., 65 mGal) is subtracted (see text for explanation).

to guide the genetic algorithm inversion in search of the best
models for the crustal density structure in central Taiwan. Two
end-member cases are considered in this study: In the first case,
we assume that the residual gravity anomaly is attributable to
the undulations of the Moho below 34 km, creating a laterally
heterogeneous mass distribution. In the second case, we as-
sume that the density below 34 km is laterally uniform and the
residual gravity anomaly is the result of a density structure in
the upper 34 km, not represented in the initial density model.

In each case, it is important not only to find a solution but also
to know the shape of the misfit function in the model space near
the solution. By fixing all parameters except one and changing
the unfixed parameters, we can calculate the corresponding
changes in the misfit function (5). By plotting the misfit function
against the parameter, we can determine whether the local
minimum is located in a deep well or in a gentle valley. If it is
in a deep well, the solution is good at least near this point. If,
instead, it is in a gentle valley, then the data have low resolution
for the parameter near this point. This approach does not solve
the problem of uniqueness in the inversion, but at least we can
get some insight to the nature of the local minimums.

To increase the computational efficiency, we divide the study
region into 20 subregions (Figure 5) and apply the genetic al-
gorithm to the subregions in parallel. Relevant gravity mea-
surements that fall immediately outside of the boundary of the
study area (<10 km) are included in the inversion. The best
models from the subregions are then assembled in a complete
search. As before, we choose a population size of 32 models, a
crossover rate of 0.9, and a mutation rate of 0.001.

Case 1: Moho undulations

Here we invert the gravity data to determine the Moho un-
dulation below 34 km, assuming that the density in the upper
34 km is fixed by the initial model. If we choose the mantle
density as the reference in the inversion, the crustal densities
will appear negative and the residual anomaly in Figure 4c will
shift toward negative by a constant value. The magnitude of this
density contrast shift is a function of the depth of the Moho. If
the Moho undulation occurs immediately beneath 34 km, this
negative shift is 65× 10−5 m/s2; the resulting anomaly is shown
in Figure 4d.

The density contrast across the Moho must be determined.
Because of the trade-off between density contrast and Moho

Figure 5. Subdivisions of the study region into columns for par-
allel genetic algorithm inversion (see text for detail). Numbers
in each square mark the number of gravity measurements used
in parallel inversion for density in the respective column.
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depth, we determine the density contrast by examining the
shape of the misfit function in the model space of the two
variables: the Moho density contrast and the maximum Moho
depth (Figure 6). We construct the configuration of the misfit
function by independently changing the Moho density contrast
from 200 to 600 kg/m3, at steps of 100 kg/m3, and the maximum
Moho depth from 40 to 70 km, at steps of 5 km. To save com-
puter time, we use only ten model generations for each point in
the model space. The misfit function so constructed (Figure 6)
shows an elongated belt of relative minimum. Two isolated
minimums occur within this belt: one at a density contrast of
500 kg/m3 and a maximum depth of 50 km (model M500), and
the other at a density contrast of 400 kg/m3 and a maximum
depth of 60 km (model M400). Since the topography of the
model space around the two minimums is similar, we consider
both cases in the genetic algorithm search. In each case we let
the search to go through 100 generations to arrive at a stable
solution. Following Silva et al. (2002), we confine the search to
the class of compact bodies without holes and complex protru-
sions (i.e., saw-toothed zigzags on a surface). Protrusions are
avoided on the model Moho by requesting

H + x= H + 2 km if x ≥ 1 km,

= H if |x| < 1 km,

= H − 2 km if x ≤ −1 km,

where H is the Moho depth of the current model. Holes are
avoided by requesting that any hole created be filled by the
density of the adjacent elements. The revised model is placed
back in the genetic algorithm selection process to create the
next generation of models.

The average misfits for models M400 and M500 are 3.35×
10−5 and 3.65× 10−5 m/s2 (i.e., 3.35 and 3.65 mGal), respec-
tively. The inverted Moho depth for the two models is overlaid
on the outlines of the major structural units in Taiwan and
displayed in Figures 7a and 7b. Both models show a crustal

Figure 6. Misfit function (in 10−5 m/s2, or mGal) in model space
of Moho density contrast and maximum Moho depth. Note
the occurrence of a belt of relative minimum and two local
minimums within this belt.

root trending north-northeast–south-southwest beneath the
Western Central Range at latitudes below 24◦N; these turn
northeastward at higher latitudes toward the Eastern Central
Range. The calculated gravity anomaly for the two models is
given in Figures 8a and 8c, and the difference between the
calculated gravity anomaly and the anomaly in Figure 4d are

Figure 7. (a) Inverted Moho depth for model M400. (b) In-
verted Moho depth for model M500. Numbers on contours are
in kilometers below sea level.

Figure 8. (a) Calculated gravity anomaly for model M400.
(b) Difference between residual gravity anomaly (Figure 4d)
and (a). (c) Calculated gravity anomaly for model M500.
(d) Difference between residual gravity anomaly (Figure 4d)
and (c). Numbers on contours are in 10−5 m/s2 (i.e., mGal).
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given in Figures 8b and 8d, respectively. Figures 8a and 8c show
that both inverted models have recovered the most important
feature in the residual gravity anomaly, i.e., an elongated arc
of negative gravity anomaly along the Western and Eastern
Central Ranges. Figures 8b and 8d show that the maximum
difference between the calculated anomaly and the anomaly
in Figure 4d is ∼5× 10−5 m/s2 (i.e., ∼5 mGal).

Case 2: Density difference in the upper 34 km

Here we assume that the residual gravity anomaly is entirely
the result of density differences from the initial model in the
upper 34 km, which may arise from the uncertainty in the em-
pirical velocity–density relation and/or in the seismic velocity
model. In this case, we use the genetic algorithm to determine
the unaccounted density differences, assuming the density be-
low 34 km is laterally uniform. As in the previous case, we ex-
amine the misfit function in the model space of the density dif-
ference. We construct the misfit function by allowing the den-
sity difference1ρ to change from 10 to 600 kg/m3. The mean of
the misfits of the 32 models in the last generation in the genetic
algorithm inversion is plotted against the allowed density dif-
ference in Figure 9. It shows no local minimum but a continued
decline from 45× 10−5 m/s2 (i.e., 45 mGal) at 1ρ= 10 kg/m3,
to 25× 10−5 m/s2 (i.e., 25 mGal) at 1ρ= 300 kg/m3, and to
19× 10−5 m/s2 (i.e., 19 mGal) at 1ρ= 600 kg/m3. Thus, a den-
sity model in the upper 34 km could be found to satisfy the
gravity data only if the allowed density contrast were increased
beyond 600 kg/m3. However, numerical experiments show that
if the density contrast equals or exceeds 100 kg/m3, the inverted
density model begins to lose the structural integrity inherited
from the seismic tomographic velocity. In other words, if we
confine the density anomaly in the upper 34 km and force the
model to fit the gravity data, the structural fabrics of the den-
sity model would no longer resemble that of the tomographic
seismic velocity. Since the structural fabric of the tomographic
seismic velocity model needs to be honored, no density model
can be found to fit the anomaly if the changes are confined
within the upper 34 km.

Figure 9. Misfit function (in 10−5 m/s2, or, mGal) plotted against
density difference from the initial density model. No relative
minimum in misfit function occurs in this space.

DISCUSSION

Tomographic imaging by Rau and Wu (1995) reveals a crustal
root extending to 50 km beneath the Central Ranges. Even
though the root revealed by seismological means may not nec-
essarily be the same as that revealed by gravity inversion, the
seismological finding provides an independent, albeit qualita-
tive, confirmation of the present result. Comparison between
Figures 7a and 7b shows that models M400 and M500 are hardly
distinguishable on the basis of gravity data alone. This indicates
that the current resolving power of the gravity data is insuffi-
cient for discriminating between the two models and that in-
dependent studies would be needed.

The density contrast of 400 to 500 kg/m3 across the Moho,
predicted in this study from the minimums of the misfit func-
tion, is consistent with the available petrophysical data for the
density contrast between the major rock type in the lower crust
and that in the upper mantle (e.g., Birch, 1961; Christensen and
Mooney, 1995); it is also in agreement with the results of inde-
pendent gravimetric studies on the density contrast across the
Moho in other parts of the world (e.g., Lefort and Agarwal,
2002).

Both M400 and M500 show a flat Moho at a depth between
34 and 35 km, except in areas beneath the Central Ranges, in
agreement with the result in a 2D model of Wu et al. (1997,
their Figure 12). In addition, both models show that the north–
northeast-trending root beneath the Western Central Range,
at latitudes below 24◦N, turns clockwise towards the northeast
to lie beneath the Eastern Central Range at higher latitudes.
As noted earlier, a major change in the structural trend oc-
curs in Taiwan, from a north-northeast trend in central Taiwan
to a northeast trend at higher latitudes (Ho, 1988; Lu et al.,
1995). Lu and Malavieille (1994) suggest that the change in
the structural trend may represent a rotation of the deformed
crustal blocks around the northern tip of the Luzon arc that
acts as an indenter in an oblique collision between the Philip-
pine Sea plate and the China continental margin. This inter-
pretation is consistent with the available stress (Lu et al., 1995)
and global positioning system (GPS) measurements (Yu et al.,
1997), which show similar clockwise rotation in their princi-
pal directions. Although both the modeled crustal root and the
geologic structure show similar clockwise rotations, the for-
mer turns at a lower latitude such that it crosses the boundary
between the Western and the Eastern Central Ranges to lie
beneath the Eastern Central Range at higher latitudes.

While this result may provide a target for future research,
several factors could have contributed to uncertainty in the
present result. First, the models examined above represent
end-member models. In reality, density difference from the ini-
tial model may occur both above and below 34 km, and these
may contribute in different proportions to the residual grav-
ity anomaly. Second, the seismographic stations of the Central
Weather Bureau seismic network used in Cheng (2000) were
all located on land. Thus, the crust in the coastal area was rela-
tively poorly sampled by seismic rays. This may lead to a rela-
tively large uncertainty in the velocity model near the coastal
area. Third, laboratory experimental error in determining ve-
locity and density of rocks and the scatter of experimental data
suggest there may be substantial uncertainty in the empirical
velocity–density relationship (10) and thus considerable un-
certainty in the initial density model. Finally and noted earlier,
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uncertainty exists in the removal of the regional trend from the
gravity data. The result of numerical experiments, however,
shows that this uncertainty may not change the major charac-
teristics of the gravity anomaly, even though it may affect the
magnitude of the anomaly.

The uncertainties in the seismic velocity model and in the
initial density model may cause corresponding uncertainties
in the calculated gravity anomaly of the initial density model,
which in turn may result in an uncertainty in the residual gravity
anomaly used in the genetic algorithm inversion. However, in
view of the fact that the misfit function in Figure 9 does not show
a local minimum in the model space of the density difference
from the initial model, we believe that the uncertainties noted
above may not change the conclusion of the present study that
the major cause of the residual gravity anomaly is a low-density
crustal root beneath the Central Ranges extending from 34 km
to depth of 50 to 60 km.

ACKNOWLEDGMENTS

We thank Associate Editor John Peirce, Assistant Editor
Yonghe Sun, and two anonymous reviewers for helpful com-
ments. Work was supported by NSF grant EAR-01-06802 and
NSFC grant 40174027.40074022.

REFERENCES

Angelier, J., Barrier, E., and Chu, H.-T., 1995, Plate collision and
paleo-stress trajectories in a fold-thrust belt: The foothills of Tai-
wan: Tectonophysics, 125, 161–178.

Bathe, K.-J., 1996, Finite element procedures: Prentice-Hall, Inc.
Birch, F., 1961, The velocity of compressional waves in rocks to

10 kilobars, part 2: Journal of Geophysical Research, 66, 2199–
2224.

Blakely, R. J., 1995, Potential theory in gravity and magnetic applica-
tions: Cambridge University Press.

Camacho, A. G., Montesinos, F. G., and Vieira, R., 2002, A 3-D gravity
inversion tool based on exploration of model possibilities: Comput-
ers & Geosciences, 28, 191–204.

Cheng, W. B., 2000, Three-dimensional crustal structure around the
source area of the 1999 Chi-Chi earthquake in Taiwan and its relation
to the aftershock locations: Terrestrial Atmospheric and Oceanic
Sciences, 11, 643–660.

Christensen, N. I., and Mooney, W. D., 1995, Seismic velocity structure
and composition of the continental crust: A global view: Journal of
Geophysical Research, 100, 9761–9788.

Dobrin, M. B., and Savit, C. H., 1988, Introduction to geophysical
prospecting, 4th ed., McGraw-Hill Book Company.

Goldberg, D.E., 1989, Genetic algorithm: Addison-Wesley Publ.
Company.

Goldberg, D. E., and Richardson, J., 1987, Genetic algorithm with shar-
ing for multimodal function optimization: 2nd International Confer-

ence on Genetic Algorithm, Proceedings, 41–49.
Hjelt, S.-E., 1992, Pragmatic inversion of geophysical data: Springer-

Verlag Berlin.
Ho, C. S., 1988, An introduction to the geology of Taiwan: Explanatory

text for the geologic map of Taiwan, 2nd ed: Republic of China,
Ministry of Economic Affairs.

Humphreys, E., and Clayton, R.W., 1988, Adaptation of back projec-
tion tomography to seismic travel time problems: Journal of Geo-
physical Research, 93, 1073–1085.

Johnson, L. R., and Litehiser, J. J., 1972, A method for computing the
gravitational attraction of three dimensional bodies in spherical or
ellipsoidal earth: Journal of Geophysical Research, 77, 6999–7009.

Lefort, J. P., and Agarwal, B. N. P., 2002, Topography of the Moho un-
dulations in France from gravity data: Their age and origin: Tectono-
physics, 350, 194–213.

Lu, C.-Y., and Malavieille, J., 1994, Oblique convergence, indentation
and rotation tectonics in the Taiwan mountain belt: Insight from
experimental modeling: Earth and Planetary Science Letters, 121,
477–494.

Lu, C.-Y., Angelier, J., Chu, H.-T., and Lee, J.-C., 1995, Contractional,
transcurrent, rotational and extensional tectonics: Examples from
northern Taiwan: Tectonophysics, 246, 129–146.

Mansanne, F., and Schoenauer, M., 2002, An automatic geophysi-
cal inversion procedure using a genetic algorithem, in Wong, P.,
Aminzadeh, F., and Nikravesh, M., Ed., Soft computing for reservoir
characterization and modeling: Physica-Verlag, Heidelberg, 331–
353.

Oldenburg, D. W., 1974, The inversion and interpretation of gravity
anomalies: Geophysics, 39, 526–536.

Parker, B. P., 1999, Genetic algorithms and their use in geophysical
problems: Ph.D. thesis, University of California at Berkeley.

Parker, R. L., 1972, The rapid calculation of potential anomalies: Geo-
physical Journal of the Royal Astronomical Society, 31, 447–455.

Rau, R. J., and Wu, F. T., 1995, Tomographic imaging of lithospheric
structures under Taiwan: Earth and Planetetary Science Letters, 133,
517–532.

Shi, Y., 1992, Genetic algorithm and some of its geophysical applica-
tions: Acta Geophysica Sinica, 35, 367–371.

Silva, J. B. C., Medeiros, W. E., and Barbosa, V. C., 2002, Practical appli-
cations of uniqueness theorems in gravimetry: Part I—Constructing
sound interpretation methods: Geophysics, 67, 788–794.

Suppe, J., 1987, The active Taiwan mountain belt, in Schaer, J. P., and
Rodgers, J., Ed., The anatomy of mountain ranges: Princeton Uni-
versity Press, 277–293.

Talwani, M., Worzel, J. L., and Landisman, M., 1959, Rapid computa-
tion for two-dimensional bodies with application to the Mendocino
submarine fracture zone, Journal of Geophysical Research, 64, 49–
59.

Teng, L. S., 1990, Geotectonic evolution of late Cenozoic arc-continent
collision in Taiwan: Tectonophysics, 183, 57–76.

Tsai, K.-C., 1999, Study of gravity trrain correction (in Chinese): Mas-
ter’s thesis, National Central University, Taiwan.

Wu, F. T., Rau, R.-J., and Salzberg, D., 1997, Taiwan orogeny: Thin-
skinned or lithospheric collision?: Tectonophysics, 274, 191–220.

Yen, H.-Y., Yeh, Y.-H., Lin, C.-H., Chen, K.-J., and Tsai, Y.-B., 1995,
Gravity survey of Taiwan: Journal of Physical Earth, 43, 685–696.

Yu, S.-B., Chen, H. Y., and Kuo, L.-C., 1997, Velocity field of GPS
stations in the Taiwan area: Tectonophysics, 274, 41–59.

Zienkiewicz, O. C., and Taylor, R. L., 1988, The finite element method:
McGraw-Hill: Book Company.




