Lawrence Berkeley National Laboratory
Recent Work

Title
Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

Permalink
https://escholarship.org/uc/item/9xp2s5g2

Journal
Science, 358(6368)

ISSN
0036-8075

Authors
Polishchuk, I
Bracha, AA
Bloch, L
et al.

Publication Date
2017-12-08

DOI
10.1126/science.aaj2156

Peer reviewed
In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar *Ophiocoma wendtii*. This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier–Preston zones known in classical metallurgy. We believe that these calcite nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.

BIOLOGICAL MATERIALS

Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

Iryna Polishchuk,1,* Avigal Aronhime Bracha,1 Leonid Bloch,1,† David Levy,1 Stas Kozachkivich,1 Yael Etinger-Geller,1 Yaron Kauffmann,1 Manfred Burghammer,2 Carlotta Giacobbe,2 Julie Villanova,2 Gordon Hendler,3 Chang-Yu Sun,4 Anthony J. Giuffre,4 Matthew A. Marcus,5 Lakshminath Kundanati,6 Paul Zaslansky,7 Nicola M. Pugno,6,8,9 Pupa U. P. A. Gilbert,4 Alex Katsman,1 Boaz Pokroy1,†

In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar *Ophiocoma wendtii*. This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier–Preston zones known in classical metallurgy. We believe that these calcite nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.

1Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel.2The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France.3Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA.4Departments of Physics, Chemistry, Geoscience, University of Wisconsin–Madison, Madison, WI 53706, USA.5Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.6Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.7Department for Environmental and Mechanical Engineering, University of Zürich, 8092 Zürich, Switzerland.8Laboratory of Advanced Materials, Queen Mary University of London, Mile End Road, London E1 4NS, UK.9Net-Lab, Edwards Amdahl Foundation, Italian Space Agency. Via del Politecnico sn, 00133 Rome, Italy.10Present address: The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France, and Institute of Technology in Zurich, Rämistrasse 101, 8092 Zürich, Switzerland.11*Corresponding author. Email: bpokroy@technion.ac.il*

RESEARCH

DEVELOPMENTAL AND COMPARATIVE MATERIALS SCIENCE

Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

Iryna Polishchuk,1,* Avigal Aronhime Bracha,1 Leonid Bloch,1,† David Levy,1 Stas Kozachkivich,1 Yael Etinger-Geller,1 Yaron Kauffmann,1 Manfred Burghammer,2 Carlotta Giacobbe,2 Julie Villanova,2 Gordon Hendler,3 Chang-Yu Sun,4 Anthony J. Giuffre,4 Matthew A. Marcus,5 Lakshminath Kundanati,6 Paul Zaslansky,7 Nicola M. Pugno,6,8,9 Pupa U. P. A. Gilbert,4 Alex Katsman,1 Boaz Pokroy1,†

In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar *Ophiocoma wendtii*. This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier–Preston zones known in classical metallurgy. We believe that these calcite nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.

1Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel.2The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France.3Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA.4Departments of Physics, Chemistry, Geoscience, University of Wisconsin–Madison, Madison, WI 53706, USA.*Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.5Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.6Department for Environmental and Mechanical Engineering, University of Zürich, 8092 Zürich, Switzerland.7Laboratory of Advanced Materials, Queen Mary University of London, Mile End Road, London E1 4NS, UK.8Net-Lab, Edwards Amdahl Foundation, Italian Space Agency. Via del Politecnico sn, 00133 Rome, Italy.9Present address: The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France, and Institute of Technology in Zurich, Rämistrasse 101, 8092 Zürich, Switzerland.10*Corresponding author. Email: bpokroy@technion.ac.il*
the powder x-ray diffraction (XRD) corroborated this finding (fig. S4). Magnesium energy-filtered TEM of the heated sample confirmed that the domains were magnesium-rich when compared to the matrix (fig. S5). Proof that the domains are rich in magnesium was obtained, before heat treatment, by x-ray absorption near-edge structure spectroscopy and photoemission electron microscopy (XANES-PEEM) (15) (Fig. 3, A and B) and by two-dimensional (2D) time-of-flight secondary ion mass spectrometry (ToF-SIMS) (15) from a single lens (Fig. 3C). Both assessments revealed that the dispersed particles are richer in magnesium than the matrix. Component mapping with PEEM (15) was possible because the nanodomains and the lens matrix are spectroscopically distinct, as shown in XANES spectra (Fig. 3B and table S2).

As the calcite nanodomains are rich in magnesium, and the lattice parameters of these nanoparticles are considerably smaller than those of the calcite matrix, it would seem that at least part of the large shifts in diffraction peaks upon heating to larger lattice parameters is indicative of compressive strains in the crystal matrix. This is probably a result of coherence between the nanodomains and the matrix. The presence of local strain fields is confirmed by dark-field TEM imaging, in which strain fringes are seen (Fig. 1E); however, they completely disappear after heat treatment as the strains are relaxed (fig. S6).

We also performed submicrometer synchrotron scanning x-ray diffractometry (15) on cross sections of intact lens arrays, using a beam spot size of ~180 nm by 150 nm. Not only did this procedure verify that the entire lens array is a single crystal (see fig. S7), but we could also observe local variations of ±0.1% in the lattice parameters, as can be seen from the maps of the various d spacings (Fig. 4A).

The strengthening and toughening of these otherwise brittle lenses depends upon coherent magnesium-rich calcite nanoparticles within a lower-magnesium single crystal of calcite. These nanoparticles exert compressive strains on the matrix but are themselves under a high tensile strain. Because of the coherent interface before heat treatment, the presence of two distinct phases is not detectable on HRPXRD. However, if the diffractogram is plotted with the intensity in logarithmic scale, a hump can be observed at the base of each of the diffraction peaks before annealing (Fig. 2, A and B). Line-profile analysis yields a nanoparticle size of about 5 nm. As the sample is heated and the particles grow, the coherent interface is eventually destroyed. The nanoparticles are very similar to those in coherent Guinier–Preston zones of classical metallurgy, which are formed by rapid cooling of a homogeneous alloy, with limited solubility of one of the components at low temperatures. After quenching, the system is out of phase equilibrium and in a supersaturated solid solution state. As a result, and owing to the low rate of diffusion at ambient temperature, coherent nanoprecipitates form in the matrix in a process termed “aging” and exert strains.

We believe that the brittlestar lens demonstrates a very similar strategy. The CaCO3–MgCO3 binary phase diagram reveals limited solubility of Mg

\[\text{Polishchuk et al., Science} \text{ 358, 1294–1298 (2017)} \] 8 December 2017

Fig. 1. Characterization from the micro- to the nanostructure.
(A) Scanning electron microscopy image showing an entire dorsal arm plate and a higher-magnification inset. (B) HRTEM (15) image of a thin section from a lens revealing brighter nanodomains, although the FFT pattern (inset) is that of a single crystal. (C) Higher magnification of an area in (B) shows a lattice image undisrupted by the nanodomains, which demonstrate coherent interfaces with the lattice by the continuous lattice fringes. The inset shows an electron diffraction image from this area. (D) Bright-field TEM image obtained during in situ heating at 450°C, revealing the temperature-dependent growth of the nanodomains. (E) Dark-field HRTEM acquired using the diffracted beam marked by the diffraction spot in the yellow square in (C), and demonstrating numerous strain fringes. (F) A virtual slice within a single lens produced by 3D x-ray nanoCT (15), revealing alternating density layers probably owing to varying nanoprecipitate content.
Quantitative XRD data analysis of the heated samples reveals a volume fraction of ~8% magnesium-rich phase. This concentration may seem too low to exert coherent strains on the entire matrix; however, if we consider a simple case in which the precipitates are spherical with a radius of \(r_0\), then the distance between particles, \(l\), is determined by their volume fraction, \(\phi\): \(l = r_0/(4\pi/3)^{1/3}\). For \(\phi = 0.06\), the distance \(l = 4r_0\) (see fig. S8) and the distance between particles is only \(2r_0\). On the basis of TEM and XRD, we can estimate \(2r_0\) to be ~5 nm. Bearing in mind that the strain caused by an isolated spherical coherent inclusion in the matrix decreases with distance according to the law \((r_0/r)^4\), the average strain of the matrix caused by the ensemble of coherent inclusions can be estimated as

\[3Z(q^2 - 1)^{-1}\ln q \Delta \epsilon_c^e,\]

where \(\Delta \epsilon_c^e\) is the maximum coherent strain near the inclusion/matrix interface, \(q = l/r_0\), and \(Z\) is the coordination number of a precipitate (we used \(Z = 6\)). If the precipitate volume fraction \(\phi \sim 0.08\), the average coherent strain of the matrix may reach a magnitude of \(\sim 0.5\Delta \epsilon_c^e\). The average macroscopic strain in a stress-free bulk crystal containing a homogeneous distribution of coherent magnesium-rich inclusions is \(\epsilon_{\text{total}}^e = \epsilon_{\text{inclusion}}^e\), where \(\epsilon_{\text{inclusion}}^e\) is the stress-free strain of the inclusion phase (transformation strain). This macroscopic strain consists of elastic and inelastic components. Inelastic strain caused by transformation strain of inclusions, \(\epsilon_{\text{inclusion}}^e\), can be accompanied by substantial internal coherent strains, with corresponding tensile stresses in the particles and compressive stresses in the matrix (15). Because of the small particle size, the particles can withstand relatively large tensile stresses against coherence loss. As known from metallurgical Guinier–Preston zones, the stresses arise owing to the presence of coherent interfaces (21). When a growing coherent inclusion reaches a certain critical size, the elastic energy becomes high enough to induce relaxation processes, and the coherence is lost (21). The nanoparticles’ critical size for coherence loss is evaluated from 20 to 40 nm (15). This is shown in Fig. 2C, where the nanoparticles grow while at the same time, the strains in the particles (tensile) and in the matrix (compressive) are relaxed.

To estimate the absolute strain in the matrix, it is necessary to know the magnesium concentrations in both the matrix and the nanoparticles to derive their elastic constants and the difference in their lattice parameters that leads to the lattice mismatch. If we assume that for nanoparticles, \(\phi = 8\%\), and that their composition is close to 40 mol % magnesium, this yields a matrix concentration of \(n_{\text{matrix}} = 13.3(1)\) mol % magnesium \(n_{\text{magn}} = \phi n_{\text{matrix}}(1 - \phi)\). Using a Mori–Tanaka homogenization scheme (22), we evaluated the average hydrostatic elastic strain within the nanoparticles as ~2.3% and within the matrix ~0.13%.

These coherent strains may result in an average compressive hydrostatic stress of ~170 MPa in the matrix (15). At first glance, these figures appear to be high; however, if we consider the precipitate size to be ~5 nm, we can conclude that the strain state is very similar to that of a thin epitaxial layer that often contains misfits of this order even for calcium carbonate (23).

When the TEM imaging is observed from different orientations, the nanoprecipitates appear to have a platelet-like shape (fig. S9). This is confirmed by the small-angle x-ray scattering (SAXS) (15) signal that was derived from submicrometer scanning diffractometry and revealed streak-shaped signals, supporting the platelet-like shape. Notably, an orientation of the SAXS signal is seen only in certain distinct layers within a single lens, but as the curved surface is approached, a strongly oriented streak-like SAXS signal can indeed be observed, indicating that the platelets are oriented with their flat surfaces parallel to the lens surface (Fig. 4, B and C, and movie S1).

This alignment is most probably attributable to surface image forces known to affect precipitate orientation, because the coherence strains are much more readily relaxed at the free surface of a crystal than at its interior. In addition, SAXS reveals ordered regions slightly beneath the curved surface in curved lines parallel to the surface (Fig. 4B). The same images also reveal a zone of lower SAXS intensity closer to the surface (Fig. 4B, green-blue color). This zone resembles a precipitate depletion zone that could correspond to what is known in metallurgy as a precipitate-free zone (24). In the composition field, such segregation sets up a fluctuation that is perpendicular to the free surface and that develops to form alternating magnesium-rich and magnesium-depleted layers parallel to the surface, a phenomenon known as surface-directed spinodal decomposition (25, 26).

Notably, observation of the lattice parameter map from the same lens (Fig. 4A) reveals alternating lattice parameters that correspond to the features observed by SAXS (Fig. 4B).

Fig. 2. High-resolution powder XRD characterization. (A) Full diffractogram of a powdered dorsal arm plates sample at room temperature collected at a wavelength of 0.4106 Å, linear intensity (black) and logarithmic intensity scales (red), (B) Enlargement of the (104) diffraction peak comparing linear (black) and logarithmic (red) intensity scales, and revealing the presence of nanodomains at the base of the diffraction peak. (C) Evolution of the (104) diffraction peak with heat treatments. After annealing at 400°C, a distinct broad diffraction peak appears owing to the heat-induced loss of nanoprecipitate coherence.
We performed indentation measurements and synchrotron nanotomography of a single lens after inducing cracks in it by mechanical cutting (15). From the indentation experiments, we could derive the values of the elastic constants and the hardness (table S4). To estimate the (mode I) fracture toughness of the samples, we used the classical Lawn, Evans, and Marshall model (15, 27, 28). Although this model was primarily developed for polycrystalline materials, the comparison of K_{IC} of various single crystals is possible. We performed the indentation measurements on the uppermost polished surface of the lenses, which corresponds to the [001] crystallographic direction of calcite, and hence we could compare our results to those obtained for [001]-cut and polished geological calcite. We found that the K_{IC} in brittlestar lens increased by more than two-fold (2.21) relative to the geological counterpart, from 0.19 ± 0.06 to 0.42 ± 0.08 MPa·m$^{1/2}$ (table S5). These values are of the same order as those determined for geological calcite (29) (table S5), although the absolute values obtained in different studies cannot be rigorously compared. The indentation trace shows a layering structure, which is not observed in the geological counterpart (fig. S10) and is probably a result of cracks that propagate parallel to the alternating layers observed in Figs. 1F and 4, A, B, and D. Indentation on the heat-treated lenses (fig. S11) demonstrated that after annealing, the hardness (table S4) and the fracture toughness (table S5) decreased by 50 and 25%, respectively, as expected. The fracture toughness after annealing is nevertheless 1.63 times that of geological calcite.

Nano–computed tomography (nanoCT) of a single lens revealed that the lens has several alternating layers of density (indicated by the brightness in phase contrast in Figs. 1F and 4D).
The alternating densities are probably due to the different concentrations of magnesium-rich nanoprecipitates that coincide with the diffraction-mapping features. A varying density of nanoprecipitates results in varying degrees of compressive stresses in the lens, as indicated by the scanning diffractometry (Fig. 4, A and B). We would expect, then, a propagating crack to become more retarded and more deflected as the compressive stresses increase. Figure 4D (inset) shows that the crack indeed deflects each time it approaches a varying-density layer. Such crack deflection thus provides further evidence of enhanced toughness owing to the Guinier–Preston–like precipitates within the matrix; however, the layered structure can also contribute to the enhancement in mechanical properties (30). It should be emphasized that Guinier–Preston zones in metals lead to an increase in hardness, strength, and brittleness by mitigating dislocation motion, whereas in biogenic calcite, hardness, strength, and toughness are simultaneously enhanced by a different mechanism: namely, mitigation of cracks.

By considering the average crack deflection length \(a_\perp = 300 \text{ to } 500 \text{ nm (along the layer interfaces of thickness } t \cong 250 \text{ nm; see fig. S12) in combination with the measured compressive strain and calculated compressive stress } \sigma_0 \sim -170 \text{ MPa in the matrix, we have developed a model to estimate the toughening } \Delta K \text{, resulting in}

\[
\frac{\Delta K}{K_{IC}} = \left(1 - \frac{\sigma_0}{\sigma_C}\right)^{1/2} \frac{a_\perp}{t},
\]

where \(\sigma_C\) is the material strength in the absence of precompression and \(K\) represents the ratio between mode II and mode I fracture energies, assumed to be close to unity (15). From the measured toughening of the heated lenses (1.63, only due to crack deflection) and natural lenses (2.21, due to crack deflection and precompression), we estimate \(a_\perp \sim 415 \text{ nm (in agreement with the observations; see fig. S12)}\) and \(\sigma_C = 472 \text{ MPa. Thus, the strength of the natural lenses } \sigma_C = \sigma_C - \sigma_0 = 642 \text{ MPa demonstrates a strengthening only due to precompression of } 1.36. The measured toughening of 2.21 and estimated strengthening of 1.36 represent a considerable simultaneous increase in both the fracture toughness and strength of calcite, the latter of which is typically on the order of a few tens of megapascals for macroscopic geological calcite (31).

Although there are some known examples of biogenic crystals under compression (32, 33), the strategy described here provides an elegant way to maintain a solid matrix under compressive stresses, known to be among the most efficient means of toughening ceramics such as tempered glass or prestressed concrete. The nanometric size of the precipitates enables them to bear the high tensile stresses. Another appealing aspect of this system is its ability to achieve a superior microstructure at ambient temperature and pressure as a result of its formation via supersaturated amorphous transient precursor rather than via heating and quenching, as in conventional materials science.

REFERENCES AND NOTES

15. Materials and methods and supplementary text are available as supplementary materials.
Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

Iryna Polishchuk, Avigail Aronhime Bracha, Leonid Bloch, Davide Levy, Stas Kozachkevich, Yael Etinger-Geller, Yaron Kauffmann, Manfred Burghammer, Carlotta Giacobbe, Julie Villanova, Gordon Hendler, Chang-Yu Sun, Anthony J. Giuffre, Matthew A. Marcus, Lakshminath Kundanati, Paul Zasiansky, Nicola M. Pugno, Pupa U. P. A. Gilbert, Alex Katsman and Boaz Pokroy

Science 358 (6368), 1294-1298.
DOI: 10.1126/science.aaj2156

Many roads to being tough
A number of routes exist to increase toughness in both natural and human-made materials—for example, using secondary phases and precipitates or exploiting tailored architectures and shaped crystals. Polishchuk et al. detail the nanoscale internal structure of calcitic microlenses formed by a brittlestar (see the Perspective by Duffy). The segregation of magnesium-rich particles forms a secondary phase that places compressive stresses on the host matrix. This toughening mechanism resembles Guinier-Preston zones known in classical metallurgy.

Science, this issue p. 1294 see also p. 1254