Title
EFFECT OF THE PION-PION RESONANCE ON K"-p SCATTERING

Permalink
https://escholarship.org/uc/item/9z188413

Authors
Ferrari, Fabio
Frye, Graham
Pusterla, Modesto.

Publication Date
1960-05-04
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EFFECT OF THE PION-PION RESONANCE ON $K^-p$ SCATTERING

Fabio Ferrari, Graham Frye, and Modesto Pusterla

May 4, 1960
EFFECT OF THE PION-PION RESONANCE ON \( K^-p \) SCATTERING*

Fabio Ferrari, Graham Frye, and Modesto Pusterla

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 4, 1960

Considerable theoretical interest has been shown in the interpretation of the low-energy \( K^-p \) scattering data. The major effort has been directed toward a convenient parameterization that takes into account the kinematic features of the many competing channels \( (K^- + p \rightarrow \bar{K}^0 + n, \pi Y) \) and the "standard"-Coulomb and mass-difference corrections.\(^1,2,3,4\) In attempts to draw conclusions about the nature of the basic \( K^- \)-meson nucleon interaction, the assumption has been made that \( k \cot \delta \) is essentially constant and equal to the reciprocal (complex) scattering length. We have examined the validity of this approximation on the basis of the Chew-Mandelstam program.\(^5\) We found that the two-pion exchange, which determines the long-range tail of the \( K^-N \) interaction, gives a substantial energy dependence to \( k \cot \delta \).

A qualitative determination that remains to be made is the sign of the real part of each \( (I = 0,1) \) scattering length.\(^6\) Two attempts to do this

---

*This work was supported by the U. S. Atomic Energy Commission, a grant from the National Academy of Science (F.F.), and the U. S. Air Force, and monitored by the Air Force Office of Scientific Research of the Air Research and Development Command.
have been based on properties of the Coulomb-nuclear interference. The angular
distribution at 172 Mev/c (laboratory-system momentum) favors a constructive
interference\textsuperscript{7} and implies a positive sign. The other attempt is based on the
apparent leveling off and decrease of the elastic-scattering cross section
with decreasing momentum ($P_L < 150$ Mev/c). Jackson and Wyld have suggested
that this behavior is due to destructive interference and consequently
concluded that the sign is negative.\textsuperscript{3} The energy dependence arising from
the two-pion exchange provides an alternative interpretation of the leveling
off. This can be seen qualitatively from the following argument: by virtue
of the small pion mass (compared with the K meson mass) the two-pion exchange
determines the longest-range part of the K$^-$-p potential. This suggests that
we regard the nuclear interaction as made up of the two-pion contribution
plus another part of shorter range, representing the net effect of everything
else. The peculiar energy dependence is interpreted as the destructive
interference between the two parts. Knowledge of the sign of the two-pion
contribution then leads to a determination of the sign of the scattering
length. Recent advances in the theory of the pion-pion interaction\textsuperscript{8} and of
the electromagnetic structure of the nucleon\textsuperscript{9} make it possible to calculate
the sign and estimate the magnitude of the two-pion contribution.

From their theoretical study of the nucleon electromagnetic structure,
Frazer and Fulco\textsuperscript{9} have inferred a resonance in the $I = 1, J = 1$ state of
pion-pion scattering. Quantitative conclusions are still uncertain,\textsuperscript{10} but
it seems likely that the two-pion contribution accounts for a large fraction
of the isotopic vector charge and magnetic moment. On the basis of their
results, we suggest that the charge structure of the K meson also receives a sizable contribution from the two-pion state. The consistency of this hypothesis and its consequences for $\pi K$ scattering has been studied. This hypothesis provides an estimate of the order of magnitude of the matrix element for emission of two pions by a K meson ($\pi\pi | K\bar{K}$). Using this estimate, we have calculated the contribution of the two-pion exchange to the $K\bar{K}$-nucleon interaction. (The details of this calculation will be presented in a separate report.)

We denote the $S$-wave $K$-nucleon elastic-scattering amplitude by $g$. It is an analytic function in the cut $s$-plane ($s$ is the total energy square in the $K-N$ center-of-mass system). The physical branch cut starts at $s = s_0 = (M_N + m_K)^2$ and extends to $+\infty$. There are other "right-hand" cuts starting from the thresholds of the dynamically coupled channels, $(m_\pi + M_\Lambda)^2$ and $(m_\pi + M_{\Sigma})^2$. The unitarity condition, which establishes certain nonlinear relations between the amplitudes $g_{ij}$ of various coupled processes, is expressed by

$$\Re (g^{-1})_{ij} = \frac{k_1 \theta_1 b_{ij}}{\gamma s (E_1 + M_1)}$$

(1)

$$\theta_1 = \begin{cases} 1 & \text{if } W_1 < \sqrt{s}, \\ 0 & \text{if } W_1 > \sqrt{s}, \end{cases}$$

where $k_1$, $E_1$, and $W_1$ are the center-of-mass momentum, baryon energy, and threshold energy of the $i$th channel. The dynamical singularity arising from the two-pion exchange is a branch cut extending from the left up to the point $s = s_2 = \sqrt{M_N^2 - m_\pi^2} + \sqrt{m_K^2 - m_\pi^2}$. Relative to the
other dynamical singularities, this cut is very close to the physical region
$s > s_0$, and should produce the strongest energy dependence in $k \cot \delta$.

We denote the elastic $\bar{K}N$ amplitude in the state of isotopic spin $I$ by $g_I$, where $I = 0, 1$. These two amplitudes are related by crossing
symmetry to amplitudes $g^{(+)}$ and $g^{(-)}$ that depend on the isotopic spin
$I' = 0, 1$ of the exchanged pion pair, namely

$$
\begin{align*}
g^0 &= g^{(+)} - 3g^{(-)}, \\
g^1 &= g^{(+)} + g^{(-)}.
\end{align*}
$$

The magnitude of the discontinuity across the two-pion cut is expressed for
our purpose as

$$
\int_{s_1}^{s_2} ds \text{Im} g^{(-)}(s) = R_1 \approx 4 M_N^4 \text{fermi},
$$

where $s_1$ is approximately equal to $80 \, m_N^2$. Assuming that only the
resonant $g^{(-)}$ amplitude is important, we have three specific predictions:
(a) the isotopic spin ratio $R_0/R_1$ is $-3$, (b) the sign of $R_1$ is positive,
and (c) the expected magnitude of $R_1$ is rather large.

The normalization of our amplitude $g$ is given by its relation to the
$\bar{K}-N$ elastic scattering phase shift,

$$
g(s) = \sqrt{s} \, (E + M \sqrt{(k \cot \delta - ik}.
$$

In this note we use only a very simple model in which the effect of the
two-pion cut is represented by a $\delta$ function at the position $s = a = 93 \, m_N^2$. 
in the amplitude $g$. The dynamical singularities in all other channels are represented by subtraction constants.

This model, combined with the many-channel unitarity condition, Eq. (1), leads to the following expression for $k \cot \delta$:

$$k \cot \delta_1 = \left\{ \ell(s) + \frac{1}{f_I(s) + z_1} \right\} \sqrt{s} \ (E + M), \quad (5)$$

where

$$\ell(s) = \frac{s - s_0}{\pi} \int_0^\infty \frac{ds'}{s'} \frac{\text{Im}(g^{-1})_{11}}{(s' - s)(s' - s_0)} - \frac{a - s_0}{\pi} \int_0^\infty \frac{ds'}{s'} \frac{\text{Im}(g^{-1})_{11}}{(s' - s_0)(s' - a)},$$

$$f_I(s) = \frac{1}{\pi} \left( \frac{1}{s - a} - \frac{1}{s_0 - a} \right) \frac{R_I}{1 + \beta R_I},$$

$$\beta = \frac{1}{\pi^2} \int_0^\infty \frac{ds'}{s_0} \frac{\text{Im}(g^{-1})_{11}}{(s' - a)^2},$$

and $z_1$ is a complex quantity which depends on the subtraction constants and on the slowly varying $\pi - \Xi$ center-of-mass momenta. For each isotopic spin channel, we approximate $z_1$ by a complex constant. The calculations were done by adjusting the parameters $R_I$ and $z_I$ to fit the at-rest branching ratio

$$\lambda^{-1} = \frac{\sigma_{\text{abs}} (I = 1)}{\sigma_{\text{abs}} (I = 0)} = 0.18 \pm 0.09,$$

the total cross section at 172 Mev/c ($k \sigma_{\text{tot}}/4\pi = 0.7$ fermi) and the
elastic and charge-exchange cross sections at 100 MeV/c and 172 MeV/c.

Two sets of solutions were found, corresponding to constructive or destructive Coulomb-nuclear interference in the angular distribution at 172 MeV/c (Table II). The elastic and charge-exchange cross sections resulting from the "constructive" solution are shown in Fig. 1. The energy dependence of \((k \cot \theta_1)^{-1}\) is shown in Fig. 2, where the \((a^+)\) solution of Dalitz and Yvan is also reported for comparison. Note that only the values of \(R_1\) and the ratio \(R_0/R_1\) given by the "constructive" solution agree with those calculated theoretically. From this consideration we reject the "destructive" solution. Our principal result is that \(k \cot \theta_1\) has a rather substantial energy dependence due to the two-pion exchange. Figure 2 shows that \(\text{Re} (k \cot \theta_1)\) is positive for each isotopic spin state in the momentum range above 100 MeV/c. However, the real parts of the scattering lengths appear to have opposite signs, that of the \(I = 0\) state being small and negative.

Finally, we would like to remark that, by crossing symmetry, the two-pion contribution to the \(K^+\)-proton amplitude can be determined from the parameters \(R_0\) and \(R_1\). In this case there is a destructive interference and flattening of the cross section for a repulsive \(K^+\) proton short range interaction.

We are deeply indebted to Professors Geoffrey F. Chew and Robert Karplus for many illuminating discussions.
FIGURE CAPTIONS

Fig. 1. Cross sections for elastic and charge-exchange $K^-$-proton scattering. The $(a+)$ solution of Dalitz and Tuan (dotted lines) is included for comparison.

Fig. 2. Momentum dependence of the real and imaginary parts of $(k \cot \delta)^{-1}$ (a) for isotopic spin $I = 0$, (b) for isotopic spin $I = 1$. The dotted lines are the $(a+)$ solution of Dalitz and Tuan.
Two sets of parameters that fit the available experimental data. The solutions are characterized by the constructive or destructive nature of the Coulomb-nuclear interference in the angular distribution at 172 Mev/c.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Constructive</th>
<th>Destructive</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1$</td>
<td>$1.0 M_N^4$ fermi</td>
<td>$2.0 M_N^4$ fermi</td>
</tr>
<tr>
<td>$R_0/R_1$</td>
<td>-3.8</td>
<td>+1.50</td>
</tr>
<tr>
<td>$z_0$</td>
<td>$(1.34 + i 0.74)M_N^2$ fermi</td>
<td>$(0.93 + i 1.46)M_N^2$ fermi</td>
</tr>
<tr>
<td>$z_1$</td>
<td>$(0.67 + i 0.12)M_N^2$ fermi</td>
<td>$(-0.22 + i 1.00)M_N^2$ fermi</td>
</tr>
<tr>
<td>$\lambda^{-1}$</td>
<td>0.13</td>
<td>0.29</td>
</tr>
</tbody>
</table>
REFERENCES

6. We would like to reiterate that the attractive nature of the K-nucleon interaction is already determined by the large magnitude of at least one of the scattering lengths; Robert Karplus, L. Kerth, and T. Kycia, Phys. Rev. Letters 2, 510 (1959).
7. KIEV Report 1959; Data of Rosenfeld, Solmitz, Tripp, Ross reported by L. W. Alvarez at 9th Annual Conference on High Energy Nuclear Physics.
10. James Ball and David Wong, Lawrence Radiation Laboratory (private communication).
12. Cont.

Modesto Pusterla, Partial Waves Amplitudes for $\bar{K}$-Nuclear Scattering
(to be published) Lawrence Radiation Laboratory Report.
Fig. 1. Cross sections for elastic and charge-exchange $K^-$-proton scattering. The $(a^+)$ solution of Dalitz and Tuan (dotted lines) is included for comparison.
Fig. 2. Momentum dependence of the real and imaginary parts of $(k \cot \delta)^{-1}$ (a) for isotopic spin $I = 0$, (b) for isotopic spin $I = 1$. The dotted lines are the (a+) solution of Dalitz and Tuan.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.