Isoprene photochemistry over the Amazon rainforest

Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxypyroperoxy radicals (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppt), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, sparks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.

Significance

For isolated regions of the planet, organic peroxy radicals produced as intermediates of atmospheric photochemistry have been expected to follow HO2 rather than NO pathways. Observational evidence, however, has been lacking. An accurate understanding of the relative roles of the two pathways is needed for quantitative predictions of the concentrations of particulate matter, oxidation capacity, and consequent environmental and climate impacts. The results herein, based on measurements, find that the ratio of the reaction rate of isoprene peroxy radicals with HO2 to that with NO is about unity for background conditions of Amazonia. The implication is that sufficient NO emissions are maintained by natural processes of the forest such that both HO2 and NO pathways are important, even in this nominally low-NO region.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence may be addressed. Email: kamckinney@seas.harvard.edu or scott.martin@harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1524136113/-/DCSupplemental.
requirement for testing concepts of the reaction pathways of isoprene and the associated predictions of chemical transport models (CTMs). The products MVK and MACR have been studied in many atmospheric environments both by proton transfer reaction mass spectrometry (PTR-MS) and gas chromatography (GC) (21). Large data sets are available (7, 8, 21, 22). By comparison, ambient measurements of ISOPOOH isomers are sparse, and available data sets are limited to temperate regions (23, 24).

An additional issue is that the utility of existing data sets of MVK and MACR concentrations to test and constrain models of isoprene chemistry is challenged by recent laboratory studies that have shown that both PTR-MS and GC techniques can have a contribution from ISOPOOH species in the nominal detection of MVK and MACR (11, 13). For the usual operating conditions of PTR-MS and GC instrumentation, the two main ISOPOOH isomers [specifically, (1-OH, 2-OOH)-ISOPOOH, hereafter (1, 2)-ISOPOOH, and (4-OH, 3-OOH)-ISOPOOH, hereafter (4, 3)-ISOPOOH] decompose on the hot metal surfaces inside both types of instruments (13). The (1, 2)-ISOPOOH and (4, 3)-ISOPOOH decompose to MVK and MACR, respectively. In this case, MVK and MACR concentrations reported in the literature can be expected to be upper limits, rather than best estimates, for regions of Earth where the HO\textsubscript{2} pathway is important for the fate of ISOPOOH radicals. On a planetary scale, the contribution of the HO\textsubscript{2} pathway has been modeled as 60% larger than that of the NO pathway (10). The need for corrections to MVK and MACR data sets could be widespread.

In light of these issues, the present study was undertaken to measure the sum of (1, 2)-ISOPOOH and (4, 3)-ISOPOOH concentrations (hereafter, ISOPOOH concentration), in comparison with the sum of MVK and MACR concentrations. The measurements took place in the central region of the Amazon basin during the wet season of 2014. The measurements were made as part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment (25). A major concept of the experiment was to locate a research site (T3) several hours downwind of an urban region (specifically, 70 km west of Manaus, Amazonas, Brazil, a city of 2 million people).

Local winds at different times swept either the pollution plume of Manaus or background air of the Amazon basin across the research site. As a result, the species observed at T3 were at times produced upwind under background conditions whereas, at other times, they were significantly affected by pollution. Based on back-trajectories, the most probable transport time from the city to the measurement site was between 4 h and 5 h. By comparison, (4, 3)-ISOPOOH, isoprene, (1, 2)-ISOPOOH, MACR, and MVK have characteristic lifetimes to OH loss of ~2 h, 3 h, 4 h, 10 h, and 14 h, respectively, for a reference OH concentration of 106 cm-3 typical of many environments. Deposition and entrainment can also be important loss mechanisms (26, 27). Background air, meaning the Amazon basin in the nominal absence of the pollution plume of Manaus, had significant variability associated with it, especially with respect to effective photochemical age. Background variability arose from variations of in-basin emissions and transformations integrated across several days of meteorology as well as, at times, from significant out-of-basin influences and variability tied to transport from the Atlantic Ocean and Africa (28, 29). Even so, the effect of the plume, when present, dominated over this background variability for the measured quantities of the present study. Measurements of the ratio of ISOPOOH to MVK + MACR concentrations, reported herein, are used to assess how different amounts of pollution, including background conditions in the absence of anthropogenic influence (i.e., low NO), regulate the relative importance of isoprene photooxidation in the tropical forest of central Amazonia.

Observations

Data sets were collected at the T3 site of GoAmazon2014/5 in the wet season during an 8-week intensive operating period (SI Appendix). Concentrations of ISOPOOH and MVK + MACR were measured using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). ISOPOOH and MVK + MACR, both detected as the C\textsubscript{2}H\textsubscript{5}O2+ ion by the PTR-TOF-MS, were discriminated by use of an upstream cold trap. ISOPOOH, having a lower volatility than does MVK or MACR, was selectively removed by the cold trap (11, 30).

Fig. 1. Representative afternoon time series of (Top) CO concentrations, O\textsubscript{3} concentrations, OH concentrations, and rain amount; (Middle) NO\textsubscript{3} concentrations and shortwave broadband total down-welling irradiance; and (Bottom) signal intensities of C\textsubscript{2}H\textsubscript{5}O2+ ions and concentrations of MVK + MACR and ISOPOOH. Lifetimes of CO, O\textsubscript{3}, and OH are many days, many hours, and less than 1 s, respectively, over the tropical forest in Amazonia. (A) Polluted conditions (14 March 2014). The weather was partly cloudy with scattered showers. (B) Background conditions (30 March 2014). The weather was sunny, and there was no rainfall. Local noon is at 1600 UTC. The green and black points for the C\textsubscript{2}H\textsubscript{5}O2+ ions represent intensities with and without the cold trap in place, respectively. Intensities are given in normalized counts per second (ncps) (SI Appendix).
The day (Fig. 1B, Bottom). The MVK + MACR concentration increased from 0.9 ppb to 1.2 ppb. For comparison, daytime ISOPOOH concentrations in the western United States of up to 1 ppb were reported using CF$_3$O$^+$ as the ionization agent in a chemical ionization mass spectrometer, although authentic standards were not available for instrument calibration (23). A similar instrument, but with calibration, subsequently measured 0.4 ppb as the daytime ISOPOOH + IEPOX concentration in the southeastern United States (24).

Twenty-three days of daytime trap data were obtained during the measurement period, and a statistical analysis was carried out (Fig. 2). The ΔC$_2$H$_5$O$_2^+$ values were grouped by NO$_x$ concentration such that each of the six data subsets had an equal number of data points. Quartile and median values of ΔC$_2$H$_5$O$_2^+$ intensity and NO$_x$ concentration were calculated for each subset. Results are plotted in Fig. 2A. For subsets of NO$_x$ > 1 ppb, indicating the influence of the Manaus pollution plume, the medians were approximately zero (Fig. 2A), meaning that no ISOPOOH was detected for these conditions. By comparison, for subsets having NO$_x$ < 1 ppb, indicating the sampling of background air, the medians increased for decreasing NO$_x$ concentration. The implication is that ISOPOOH concentrations increased with lower NO$_x$ concentrations.

Fig. 1 shows the time series of trap and bypass signal intensities of the C$_2$H$_5$O$_2^+$ ion for two contrasting afternoons. The time series of the concentrations of reactive nitrogen compounds (NO$_x$), ozone (O$_3$), and carbon monoxide (CO) show that Fig. 1A and B correspond, respectively, to time periods when the pollution plume or background air passed over T3. The NO$_x$ concentration is defined as the sum concentration of NO, NO$_2$, and compounds produced from them. NO$_x$ favors NO and NO$_2$ near source regions and remains a semiconserved quantity downwind as NO and NO$_2$ are incorporated into product molecules. The instantaneous concentrations of NO at T3 are often below detection limit [70 parts per trillion (ppt)] because of the rapid titration of this species by peroxy radicals and ozone, even as it remains an important reactant. For these reasons, NO$_x$ concentration is used in this study as a surrogate variable for the integrated effects of NO on the chemistry that took place during transport to T3. As a reference point, background air in the boundary layer of the central Amazon basin in the wet season is characterized by 0.5 ± 0.3 parts per billion (ppb) of NO$_x$ (31).

On the afternoon affected by pollution, the NO$_x$ concentrations measured at T3 were regularly above 1 ppb (Fig. 1A, Middle). The concentrations of O$_3$ and CO were also elevated (Fig. 1A, Top). Back-trajectories from T3 show that the air came from Manaus (SI Appendix, Fig. S1A). Under the influence of this pollution, the trap and bypass intensities for the C$_2$H$_5$O$_2^+$ ion followed each other closely (Fig. 1A, Bottom), without any statistically significant differences. The conclusions for this polluted afternoon are that NO pathway dominated over the HO$_x$ pathway for the fate of ISOPOOH radicals and that the C$_2$H$_5$O$_2^+$ intensity predominantly arose from MVK and MACR, without any contribution by ISOPOOH.

Fluctuations are apparent in the data sets of Fig. 1A at several time points throughout the day. The fluctuations at 1600 UTC arose from a 45-min shift in the local winds from polluted easterlies to background southerlies associated with a local convective cell (SI Appendix, Fig. S2). Atmospheric concentrations of the measured species decreased because of a combination of wet deposition and convective mixing with clean air. The precipitous drops in the data sets at 1745 UTC were associated with rainfall. At other times, small fluctuations reflected variations in the amounts of Manaus pollution that reached the measurement site during the course of the observations. The C$_2$H$_5$O$_2^+$ intensity fluctuated in correlation with the NO$_x$ concentration at T3 varied little from 0.4 ppb throughout the day (Fig. 1B, Bottom). Under the influence of this pollution, the trap signal and NO$_x$ concentration were produced more rapidly (32). As an example of this acceleration, the instantaneous OH concentration increased markedly when pollution and sunlight were simultaneously present (Fig. 1A, Top).

During the afternoon of background conditions, the NO$_x$ concentration at T3 varied little from 0.4 ppb throughout the day (Fig. 1B, Middle). Ozone and carbon monoxide had concentrations typical of background air masses in the wet season (Fig. 1B, Top) (29). Back-trajectories launched from T3 showed that the air did not intersect Manaus. The air instead came from remote regions of the Amazon basin (SI Appendix, Fig. S1B). Under these conditions, the HO$_x$ pathway played an important role in the fate of ISOPOOH radicals, and, on this afternoon, the C$_2$H$_5$O$_2^+$ intensity with the cold trap in place was lower than in its absence (Fig. 1B, Bottom).

A difference signal ΔC$_2$H$_5$O$_2^+$ measured with and without the trap can be defined (SI Appendix). A nonzero ΔC$_2$H$_5$O$_2^+$ is attributed to the presence of ISOPOOH (11). The possibility of significant contributions by other compounds to ΔC$_2$H$_5$O$_2^+$, such as pinonaldehyde and isoprene epoxydiols (IEPOX) (30), was considered but ruled out (SI Appendix). The difference signal ΔC$_2$H$_5$O$_2^+$ was converted to ISOPOOH concentration based on calibrations using synthesized standards of ISOPOOH isomers. The MVK+MACR concentration was subsequently determined. For the afternoon of background conditions, the ISOPOOH concentration was ~0.6 ppb throughout
The central values of the ISOPOOH concentrations derived from the median values of the \(\Delta C_2H_5O^+ \) measurements are represented on the right axis of Fig. 24. The bar represents the 75% confidence interval around the central value of the obtained ISOPOOH concentration. Medians of \(\Delta C_2H_5O^+ \) (left axis) and central values of ISOPOOH concentrations (right axis) are slightly offset from one another because of nonlinearity in the ISOPOOH calibration, including a dependence on humidity (SI Appendix). For the bin of lowest \(NO_\text{2} \) concentration, which corresponds to 0.5 ppb as a median value, the central value of the ISOPOOH concentration was 0.5 ppb. This \(NO_\text{2} \) bin is coincident with the envelope of 0.5 ± 0.3 ppb characteristic of background conditions in the wet season of Amazonia (31).

The concentration of ISOPOOH compared with that of MVK + MACR, represented as a ratio quantity \(\xi \) was calculated, and its relationship to \(NO_\text{2} \) was analyzed. Fig. 2B plots the central value of \(\xi \) and its 75% confidence interval (bar length) for each \(NO_\text{2} \) bin. The ratio \(\xi \) decreases for increasing \(NO_\text{2} \) concentration, approaching zero for \(NO_\text{2} > 1 \) ppb. For the lowest \(NO_\text{2} \) concentration, characteristic of background conditions, the central value of \(\xi \) was 0.5 (0.4–0.6 with uncertainty).

From a technical perspective, \(\xi \) can indicate the possible quantitative error in the historical assumption that the \(C_2H_5O^+ \) signal arose exclusively from MVK and MACR. Fig. 2B shows that \(\xi \) changed with \(NO_\text{2} \) concentration for \(NO_\text{2} < 1 \) ppb but was close to zero for \(NO_\text{2} > 1 \) ppb. A criterion of \(NO_\text{2} > 1 \) ppb is, therefore, suggested as a simple heuristic check before attributing the \(C_2H_5O^+ \) signal in future studies exclusively to MVK and MACR concentrations. This heuristic applies assuming that the dependence observed in the wet season of the central Amazon basin also applies to other environments. More generally, a confidence interval of 0.4–0.6 for \(\xi \) under background conditions in central Amazonia suggests that the nominal MVK and MACR concentrations reported in the literature for remote locations are in need of correction for ISOPOOH contributions when PTR-MS, GC, or other methods having hot metal surfaces were used for the measurements.

Modeling

The observed concentration ratio \(\xi \) can be used in an analytical model to estimate the ratio \(\chi \) of the production rate of ISOPOOH to that of MVK + MACR. This ratio corresponds to \((S_i + S_j)/(S_i + S_k) \) for production rates \(S_i \) (molec cm\(^{-2}\) s\(^{-1}\)) of species \(i \). Species \(1–4 \) correspond to (1, 2)-ISOPOOH, (4, 3)-ISOPOOH, MVK, and MACR, respectively. Quantities \(\xi \) and \(\chi \) differ from one another because of the different atmospheric lifetimes of species \(i \). For initial concentrations of zero and for production rates \(S_i \) and loss coefficients \(k_i \) (s\(^{-1}\)) that are constant, the following result can be obtained to relate \(\chi \) to \(\xi \) for a reaction time \(t \) (SI Appendix):

\[
\chi = \frac{(0.6/k_i)(1-e^{-k_it}) + (0.4/k_i)(1-e^{-k_jt})}{(0.6/k_i)(1-e^{-k_it}) + (0.4/k_i)(1-e^{-k_jt})} \xi.
\]

Composite, pseudo-first-order loss coefficients \(k_i \) are given by \(k_i = k_{\text{H,O,OH}} + k_{\text{en}} + k_{\text{ad}} \) for bimolecular reactions with OH, atmospheric entrainment (en), and surface deposition (ad). On-site measurements of OH concentrations by chemical ionization mass spectrometry (33), recent advances in the understanding of the deposition processes of ISOPOOH (26), and an approximate description of the boundary layer dynamics over the Amazonia (34) allow reasonable estimates of the loss coefficients \(k_i \) (SI Appendix, Table S1).

The model derivation relies on the accuracy of two approximations. (i) Species concentrations are taken as zero at sunrise, which then represents time zero. This approximation is well supported by measured concentrations, which at sunrise were <5% of the maximum measured daily concentrations (SI Appendix, Fig. S5). (ii) Production rates \(S_i \) and loss coefficients \(k_i \) are approximated as constant throughout the day, thereby corresponding to average or effective daily values. The sensitivity of the results to this approximation is examined in SI Appendix.

Fig. 1 shows that the production ratio \(\chi \) is proportional to the concentration ratio \(\xi \) for any fixed reaction time. For an average daytime \(OH \) concentration of \(5 \times 10^5 \text{ cm}^{-3} \) for background conditions (33) and an effective reaction time of 5 h representing daybreak to midafternoon, the proportionality coefficient is 1.5 (SI Appendix, Fig. S4). The confidence interval of 0.4–0.6 for \(\chi \) under background conditions (Fig. 2B) implies a range of 0.6–0.9 for \(\xi \). The appropriateness of the effective photochemical reaction time (i.e., \(5 \times 10^5 \text{ OH cm}^{-3} \) for 5 h) is verified by the agreement of the predicted and measured ratios given by the total concentration of reaction products (i.e., sum of MVK, MACR, and ISOPOOH) divided by the isoprene concentration (SI Appendix).

The product-focused methodology to determine \(\chi \) can be complemented by a source-based analysis. Reactions of ISOPOOH serve as the sources of ISOPOOH and MVK + MACR. In a source-based analysis, the production ratio \(\chi \) is expressed as follows:

\[
\chi = \frac{\sum_{j=(\text{ISOPOOH/HO}_2 \text{RO})/\text{ISOM}} Y_{\text{ISOPOOH}, \text{HO}_2 \text{RO}, j}}{Y_{\text{MVK}+\text{MACR}, j} \cdot f_j}
\]

The fractional yield of ISOPOOH in the reaction of ISOPOOH with \(HO_2 \) is represented by the term \(Y_{\text{ISOPOOH/HO}_2 \text{RO}} \), which has an estimated value of 0.90 (35). By comparison, ISOPOOH is believed to be produced neither from the reactions of ISOPOOH with \(NO \) and \(RO_2 \) nor by isomerization. The fraction yield of MVK + MACR in pathway \(j \) of the ISOPOOH reaction is represented by the term \(Y_{\text{MVK}+\text{MACR}, j} \). The best-estimate values for \(NO, HO_2, RO_2 \) and isomerization (ISOM) pathways are 0.06, 0.71, 0.75, and 0.10, respectively (SI Appendix, Table S2 and references therein).

Term \(f_j \) of Eq. 2 is the fractional contribution of pathway \(j \) to ISOPOOH loss. The fractions of the \(NO, HO_2, RO_2 \), and isomerization pathways sum to unity. These fractions were obtained for NO concentrations ranging from background to polluted conditions using a box model based on the Master Chemical Mechanism (version 3.5.1) and supplemented by recent experimental results (9, 11, 35). For stratospheric \(HO_2 \) concentrations of 0.6 to 0.9 ppb, the \(HO_2 \) concentration was held constant, although, in reality, it increased under polluted conditions (Fig. 1A). Fig. 3A shows the simulated dependence of \(f_{\text{ISOM}} \), \(f_{\text{RO}_2} \), \(f_{\text{ISOM}} \), and \(f_{\text{RO}_2} \) on NO concentration. Under polluted conditions of greater than several hundred ppt of NO, ISOPOOH loss is dominated by reaction with NO (e.g., 90% for 400 ppt NO). Under less polluted conditions, the other three reaction pathways become important.

Fig. 3B shows the simulated dependence of production ratio \(\chi \) on NO concentration and allows an inference of an effective NO concentration associated with the confidence interval 0.6–0.9 for \(\chi \). As a point of reference, background NO mixing ratios of 15–60 ppt (36), 10–30 ppt (37), 20–80 ppt (31), and 35 ppt (mean value of GoAmazon2014/5 aircraft measurement; SI Appendix, Fig. S5) have been measured for the central region of the Amazon basin for studies from 1985 through 2014. These ranges are represented by the brown arrows in Fig. 3B. According to Fig. 3B, the effective NO concentration associated with the confidence interval of \(\chi \) ranged from 16 to 30 ppt (Fig. 3, yellow shading). This effective value represents the net chemistry across the history of the air parcel. The good agreement between the effective NO concentration inferred in this way and the range of measured ambient concentrations for background conditions lends confidence to the accuracy of the overall model framework of the present study. Across the range of effective NO concentrations, the following fractional contributions to ISOPOOH reaction are obtained: 0.31 < \(f_{\text{ISOM}} < 0.39 \), 0.27 < \(f_{\text{RO}_2} < 0.40 \), 0.03 < \(f_{\text{RO}_2} < 0.05 \), and 0.25 < \(f_{\text{ISOM}} < 0.30 \) (Fig. 3A, yellow
shading). Notably, compared with the wide range of NO concentrations reported (Fig. 3A, gray shading), the effective NO concentrations based on our observation provide a tighter constraint to ISOPOO reaction under background conditions. Specifically, the confidence interval of the f_{HOO_2} to f_{NO} ratio spans 0.8–1.4. This result is robust with respect to the inclusion or not of the isomerization pathway (SI Appendix, Table S3). An important point to emphasize is that the modeling analysis leading to this ratio for background conditions is ultimately constrained by the measured concentrations of ISOPOO, MVK + MACR, and NO$_x$.

Implications

The ranges in f_{NO}, f_{HOO_2}, f_{RO_2}, and f_{ISOM} for the yellow region of Fig. 3A imply that the HO$_2$ pathway accounted for 31–39% of the reactive loss of ISOPOO under the low-NO conditions of the wet season in the central Amazon basin. Conversely, reactions with NO under low-NO conditions accounted for 27–40% of ISOPOO loss. For comparison with these values, a state-of-the-art CTM predicted that the HO$_2$ pathway contributed 59% of the reactive loss of ISOPOO radicals for the grid box of 4° x 5° encompassing the measurement site and that the contribution of the NO pathway to reactive loss was 14% for a typical wet season (SI Appendix, Table S4). An overestimate in models of the importance of the HO$_2$ pathway for ISOPOO reactive loss has important implications for predicted concentrations of organic particulate matter (5) and consequential connections among flora, oxidative capacity, aerosol particles, cloud condensation nuclei, clouds, and rainfall over this vast tropical forest (38). An underestimate of the NO pathway in central Amazonia can have profound impacts on the predicted concentrations of isoprene nitrates transported to adjacent regions, influencing NO concentrations and photochemistry in those regions (39). In addition, given the importance of this geographical region in the global isoprene budget (1), previous estimates of the fraction of ISOPOO reacting via the HO$_2$ pathway on a global basis by CTMs might also be too high (10). Future studies are needed to better constrain the fraction of ISOPOO reactive loss via the HO$_2$ pathway in other locations having high isoprene concentrations and low anthropogenic NO$_x$ emissions.

One possible reason, among others, for the gap between observations and the CTM model predictions is an underprediction of NO concentrations and hence an underestimate of the importance of the NO reaction pathway in the model. The modeled daytime average concentration of NO was 8 ppt for the grid box in which the measurement site was located. This value is much lower than the range of NO concentrations measured in central Amazonia (Fig. 3). Furthermore, the modeled daytime concentration of NO$_x$ was 0.1 ppt, which is 80% lower than the observed background NO$_x$ concentrations in central Amazonia (31). Underpredicted NO and NO$_x$ concentrations in the model might, in turn, be related to underestimated NO emissions from tropical forests. Flux measurements have shown that soils have high emissions of NO$_x$ in the forestsed regions of both central Amazonia (40–43) and southeast Asia (44). The above-soil NO$_x$ emission modeled in the CTM for the wet season of central Amazonia was 10 times lower than the observations reported in the literature (SI Appendix). Gianeveld et al. (45) additionally suggest that CTMs might underestimate the fraction of soil-emitted NO$_x$ that survives transport through tropical forest layers and is ultimately emitted to the overlying atmosphere. Herein, additional model runs were performed as a sensitivity study to establish that increasing NO$_x$ emissions above canopy by a factor of 30 can bring the modeled ratio ξ closer to its observed range (SI Appendix). Any change made to model emissions on this basis must, however, also assess possible perturbations of other modeled quantities, such as ozone or hydroxyl radical concentrations, compared with measured values (2, 46).

In outlook, current trends in human activities, including ongoing land use changes for agricultural activities as well as growing urbanization, are associated with the continual reduction of forest coverage in the Amazon basin (47). These trends, in turn, lead to increased demand for electricity and transport, which, with current technologies, increases NO$_x$ emissions (44). With respect to the atmospheric chemistry of the region, the concentration ratio ξ and its complement of the production ratio γ serve as surrogates of the qualitative characteristics of isoprene chemistry, with associated effects that are of concern to humans, such as production of ozone and organic particulate matter and changes in visibility and rainfall, among others (3, 38). Under background conditions, expressed as 75% confidence intervals, the ratio of the fractional contribution by HO$_2$ to the reactive loss of ISOPOO to that by NO$_x$ ranges from 0.8 to 1.4, the ratio of the production rate γ of ISOPOO to that of MVK + MACR ranges from 0.6 to 0.9, and the ratio ξ of the concentration of ISOPOOH to that of MVK + MACR ranges from 0.4 to 0.6. In this regard, the data (Fig. 2, ξ) and the model (Fig. 3, γ) show that the oxidant cycle is highly sensitive to changes from background to polluted conditions. The implication is that small increases in NO concentration above the background level can lead to a large change in the aforementioned endpoints of air quality and climate. In particular, the abrupt drop in ISOPOOH concentration associated with pollution speaks to the extent of
human-induced changes in photochemical cycles over the rain forest, both at present during times of widespread biomass burning in the dry season and, possibly, in the future during all seasons as a consequence of economic development and increasing pollution throughout the Amazon basin.

Materials and Methods

Measurements were made at the T3 site of the GoAmazon2014/5 Experiment (25). A PTR-TOF-MS (Ionicon Analytik) equipped with a cold trap was used to measure ISOPOOH and MVK + MACR concentrations. The approach was to collect data for a period with the trap in line to quantify MVK + MACR followed by a period in bypass to quantify MVK + MACR + ISOPOOH. Detailed additional information about the measurements and associated modeling is provided in SI Appendix.

31. Chen Q, et al. (2009) Mass spectral characterization of submicron biogenic organic particles in the Amazon Amazonas State Research Foundation (FAPEAM), the São Paulo Research Foundation (FAPESP), and the Brazilian Scientific Mobility Program (Cs/CAPES), and the United States National Science Foundation (NSF). The research was conducted under Scientific License 001030/2012-4 of the Brazilian National Council for Scientific and Technological Development (CNPq).